The bibliography includes all references from the book “Evolution’s Witness: How Eyes Evolved” as well as additional references that were not included in the book. These additional references relate to the text as well, but were not included in the initial bibliography. The references are ordered by the chapter to which they apply.
Ch1
1. Abran, D., M. Anctil, and M.A. Ali, Melatonin activity rhythms in eyes and cerebral ganglia of Aplysia californica. Gen Comp Endocrinol, 1994. 96(2): p. 215-22.
2. Alam, M. and D. Oesterhelt, Morphology, function and isolation of halobacterial flagella. J Mol Biol, 1984. 176(4): p. 459-75.
3. Allwood, A.C., et al., Stromatolite reef from the Early Archaean era of Australia. Nature, 2006. 441(7094): p. 714-718.
4. Arraiano, C.M., et al., Recent advances in the expression, evolution, and dynamics of prokaryotic genomes. J Bacteriol, 2007. 189(17): p. 6093-100.
5. Baker, N.E., Master regulatory genes; telling them what to do. Bioessays, 2001. 23(9): p. 763-6.
6. Balashov, S.P., et al., Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science, 2005. 309(5743): p. 2061-4.
7. Beronda, L.M., Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Molecular Microbiology, 2007. 64(1): p. 16-27.
8. Berson, D.M., F.A. Dunn, and M. Takao, Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002. 295(5557): p. 1070-3.
9. Bolhuis, H., et al., The genome of the square archaeon Haloquadratum walsbyi : life at the limits of water activity. BMC Genomics, 2006. 7: p. 169.
10. Boucher, Y. and W.F. Doolittle, Biodiversity: Something new under the sea. Nature, 2002. 417(6884): p. 27-28.
11. Branchini, B.R., M.H. Murtiashaw, and L.A. Egan, Synthesis of 5-nitro-2-[N-3-(4-azidophenyl)-propylamino]-benzoic acid: photoaffinity labeling of human red blood cell ghosts with a 5-nitro-2-(3-phenylpropylamino)-benzoic acid analog. Biochem Biophys Res Commun, 1991. 176(1): p. 459-65.
12. Breitling, R. and J.K. Gerber, Origin of the paired domain. Dev Genes Evol, 2000. 210(12): p. 644-50.
13. Callaerts, P., G. Halder, and W.J. Gehring, PAX-6 in development and evolution. Annu Rev Neurosci, 1997. 20: p. 483-532.
14. Cashmore, A.R., et al., Cryptochromes: Blue Light Receptors for Plants and Animals. Science, 1999. 284(5415): p. 760-765.
15. Cavalier-Smith, T., Cell evolution and Earth history: stasis and revolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006. 361(1470): p. 969-1006.
16. Chisholm, A.D. and H.R. Horvitz, Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature, 1995. 377(6544): p. 52-55.
17. Claire, L., et al., Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol Dev, 2006. 8(2): p. 150-173.
18. Crossman, L.C. and A. Walker, It’s hip to be square! Nat Rev Micro, 2007. 5(6): p. 400-401.
19. David, L.A. and E.J. Alm, Rapid evolutionary innovation during an Archaean genetic expansion. Nature, 2011. 469(7328): p. 93-6.
20. de Duve, C., The birth of complex cells. Sci Am, 1996. 274(4): p. 50-7.
21. De La Rocha, C.L., Palaeoceanography: In hot water. Nature, 2006. 443(7114): p. 920-921.
22. Deamer, D.W., Origins of life: How leaky were primitive cells? Nature, 2008. 454(7200): p. 37-38.
23. Deininger, W., M. Fuhrmann, and P. Hegemann, Opsin evolution: out of wild green yonder? Trends Genet, 2000. 16(4): p. 158-9.
24. Dellaporta, S.L., et al., Mitochondrial genome of Trichoplax adhaerens supports Placozoa as the basal lower metazoan phylum. Proceedings of the National Academy of Sciences, 2006. 103(23): p. 8751-8756.
25. Di Giulio, M., The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol, 2007. 20(2): p. 543-8.
26. Di Giulio, M., The origin of genes could be polyphyletic. Gene, 2008. 426(1-2): p. 39-46.
27. Edwards, S.L., et al., A Novel Molecular Solution for Ultraviolet Light Detection in <named-content xmlns:xlink=”http://www.w3.org/1999/xlink” content-type=”genus-species” xlink:type=”simple”>Caenorhabditis elegans</named-content>. PLoS Biol, 2008. 6(8): p. e198.
28. Engelberg, H. and R. Schoulaker, Sequence homologies between ribosomal and phage RNAs: A proposed molecular basis for RNA phage parasitism. Journal of Molecular Biology, 1976. 106(3): p. 709-730.
29. Erkel, C., et al., Genome of Rice Cluster I archaea–the key methane producers in the rice rhizosphere. Science, 2006. 313(5785): p. 370-2.
30. Erren, T.C., et al., Clockwork blue: on the evolution of non-image-forming retinal photoreceptors in marine and terrestrial vertebrates. Naturwissenschaften, 2008. 95(4): p. 273-9.
31. Fredrickson, J.K. and T.C. Onstott, Microbes deep inside the earth. Sci Am, 1996. 275(4): p. 68-73.
32. Fuhrman, J.A., M.S. Schwalbach, and U. Stingl, Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol, 2008. 6(6): p. 488-94.
33. Galliot, B. and D. Miller, Origin of anterior patterning. How old is our head? Trends Genet, 2000. 16(1): p. 1-5.
34. Gegear, R.J., et al., Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature, 2008. 454(7207): p. 1014-8.
35. Gehring, W.J. and K. Ikeo, Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet, 1999. 15(9): p. 371-7.
36. Graham, D.M., et al., Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol, 2008. 99(5): p. 2522-32.
37. Hadrys, T., et al., The Trichoplax PaxB gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory cells. Mol Biol Evol, 2005. 22(7): p. 1569-78.
38. Harris, W.A., Pax-6: where to be conserved is not conservative. Proc Natl Acad Sci U S A, 1997. 94(6): p. 2098-100.
39. Haupts, U., J. Tittor, and D. Oesterhelt, Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct, 1999. 28: p. 367-99.
40. Horst, M.A.v.d., et al., From primary photochemistry to biological function in the blue-light photoreceptors PYP and AppA. Photochemical & Photobiological Sciences, 2005. 4(9): p. 688-693.
41. Hoshiyama, D., N. Iwabe, and T. Miyata, Evolution of the gene families forming the Pax/Six regulatory network: isolation of genes from primitive animals and molecular phylogenetic analyses. FEBS Lett, 2007. 581(8): p. 1639-43.
42. Huber, C. and G. Wachtershauser, alpha-Hydroxy and alpha-amino acids under possible Hadean, volcanic origin-of-life conditions. Science, 2006. 314(5799): p. 630-2.
43. Huber, C. and G. Wächtershäuser, α-Hydroxy and α-Amino Acids Under Possible Hadean, Volcanic Origin-of-Life Conditions. Science, 2006. 314(5799): p. 630-632.
44. James, F.H., et al., Diversity among three novel groups of hyperthermophilic deep-sea <i>Thermococcus</i> species from three sites in the northeastern Pacific Ocean. FEMS Microbiology Ecology, 2001. 36(1): p. 51-60.
45. Jeng, M.S., N.K. Ng, and P.K.L. Ng, Feeding behaviour: Hydrothermal vent crabs feast on sea /`snow/’. Nature, 2004. 432(7020): p. 969-969.
46. Jensen, L.J., et al., Co-evolution of transcriptional and post-translational cell-cycle regulation. Nature, 2006. 443(7111): p. 594-597.
47. Jung, K.H., V.D. Trivedi, and J.L. Spudich, Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol, 2003. 47(6): p. 1513-22.
48. Kant, S., A. Bagaria, and S. Ramakumar, Putative homeodomain proteins identified in prokaryotes based on pattern and sequence similarity. Biochemical and Biophysical Research Communications, 2002. 299(2): p. 229-232.
49. Knauth, L.P. and D.R. Lowe, Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts. Earth and Planetary Science Letters, 1978. 41(2): p. 209-222.
50. Kozmik, Z., Pax genes in eye development and evolution. Curr Opin Genet Dev, 2005. 15(4): p. 430-8.
51. Kuhl, M., et al., Ecology: A niche for cyanobacteria containing chlorophyll d. Nature, 2005. 433(7028): p. 820-820.
52. Lee, Y.S. and M. Krauss, Dynamics of proton transfer in bacteriorhodopsin. J Am Chem Soc, 2004. 126(7): p. 2225-30.
53. Levy, O., et al., Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science, 2007. 318(5849): p. 467-70.
54. Lin, C. and D. Shalitin, CRYPTOCHROME STRUCTURE AND SIGNAL TRANSDUCTION. Annual Review of Plant Biology, 2003. 54(1): p. 469-496.
55. Man, D., et al., Diversification and spectral tuning in marine proteorhodopsins. EMBO J, 2003. 22(8): p. 1725-1731.
56. McFadden, G.I., Endosymbiosis and evolution of the plant cell. Current Opinion in Plant Biology, 1999. 2(6): p. 513-519.
57. Melyan, Z., et al., Addition of human melanopsin renders mammalian cells photoresponsive. Nature, 2005. 433(7027): p. 741-745.
58. Montgomery, B.L., Sensing the light: photoreceptive systems and signal transduction in cyanobacteria. Molecular Microbiology, 2007. 64(1): p. 16-27.
59. Moxon, E.R. and C. Wills, DNA microsatellites: agents of evolution? Sci Am, 1999. 280(1): p. 94-9.
60. Mullineaux, C.W., How do cyanobacteria sense and respond to light? Mol Microbiol, 2001. 41(5): p. 965-71.
61. Nilsson, D.E., Eye evolution: a question of genetic promiscuity. Curr Opin Neurobiol, 2004. 14(4): p. 407-14.
62. Oesterhelt, D., The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr Opin Struct Biol, 1998. 8(4): p. 489-500.
63. Oparin, A.I., The origin of life. 2d ed. 1953, New York: Dover Publications. 270 p.
64. Panda, S., et al., Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting. Science, 2002. 298(5601): p. 2213-2216.
65. Pichaud, F. and C. Desplan, Pax genes and eye organogenesis. Curr Opin Genet Dev, 2002. 12(4): p. 430-4.
66. Plachetzki, D.C., B.M. Degnan, and T.H. Oakley, The origins of novel protein interactions during animal opsin evolution. PLoS One, 2007. 2(10): p. e1054.
67. Qiu, X., et al., Induction of photosensitivity by heterologous expression of melanopsin. Nature, 2005. 433(7027): p. 745-749.
68. Raup, D.M. and J.W. Valentine, Multiple origins of life. Proc Natl Acad Sci U S A, 1983. 80(10): p. 2981-4.
69. Sancar, A., Regulation of the Mammalian Circadian Clock by Cryptochrome. Journal of Biological Chemistry, 2004. 279(33): p. 34079-34082.
70. Shapiro, R., A simpler origin for life. Sci Am, 2007. 296(6): p. 46-53.
71. Sharma, A.K., J.L. Spudich, and W.F. Doolittle, Microbial rhodopsins: functional versatility and genetic mobility. Trends Microbiol, 2006. 14(11): p. 463-9.
72. Sharma, A.K., et al., Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol, 2007. 7: p. 79.
73. Spudich, J.L., The multitalented microbial sensory rhodopsins. Trends Microbiol, 2006. 14(11): p. 480-7.
74. Spudich, J.L., et al., Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol, 2000. 16: p. 365-92.
75. Sundstrom, V., Femtobiology. Annu Rev Phys Chem, 2008. 59: p. 53-77.
76. Theobald, D.L., A formal test of the theory of universal common ancestry. Nature, 2010. 465(7295): p. 219-222.
77. Tu, D.C., et al., Nonvisual photoreception in the chick iris. Science, 2004. 306(5693): p. 129-31.
78. Van Gelder, R.N., Non-Visual Photoreception: Sensing Light without Sight. Current Biology, 2008. 18(1): p. R38-R39.
79. Venter, J.C., et al., Environmental genome shotgun sequencing of the Sargasso Sea. Science, 2004. 304(5667): p. 66-74.
80. Vorobyov, E. and J. Horst, Getting the proto-Pax by the tail. J Mol Evol, 2006. 63(2): p. 153-64.
81. Washington, I., et al., Chlorophyll derivatives as visual pigments for super vision in the red. Photochem Photobiol Sci, 2007. 6(7): p. 775-9.
82. Wells, J.G., Cooperation. Science, 1972. 176(4034): p. 459.
83. Xu, Y., T. Mori, and C.H. Johnson, Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J, 2003. 22(9): p. 2117-2126.
84. Yokoyama, S., Molecular evolution of retinal and nonretinal opsins. Genes Cells, 1996. 1(9): p. 787-94.
85. Zhou, Y.H., et al., Novel PAX6 binding sites in the human genome and the role of repetitive elements in the evolution of gene regulation. Genome Res, 2002. 12(11): p. 1716-22.
Ch2
1. Boucher, Y. and W.F. Doolittle, Biodiversity: Something new under the sea. Nature, 2002. 417(6884): p. 27-28.
2. Cavalier-Smith, T., Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci, 2006. 361(1470): p. 969-1006.
3. de Duve, C., The birth of complex cells. Sci Am, 1996. 274(4): p. 50-7.
4. de Duve, C., The origin of eukaryotes: a reappraisal. Nat Rev Genet, 2007. 8(5): p. 395-403.
5. Di Giulio, M., The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol, 2007. 20(2): p. 543-8.
6. Di Giulio, M., The origin of genes could be polyphyletic. Gene, 2008. 426(1-2): p. 39-46.
7. Ebnet, E., et al., Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri. Plant Cell, 1999. 11(8): p. 1473-84.
8. Ernst, O.P., et al., Photoactivation of Channelrhodopsin. Journal of Biological Chemistry, 2008. 283(3): p. 1637-1643.
9. Foster, K.W., Eye Evolution: Two Eyes Can Be Better Than One. Current Biology, 2009. 19(5): p. R208-R210.
10. Francis, D., On the eyespot of the dinoflagellate, Nematodinium. J Exp Biol, 1967. 47(3): p. 495-501.
11. Greuet, C., Structure fine de l’ocelled’Eryihropsis pavillardi. C. r. hebd. Seanc. Acad. Sci., 1965. 261: p. 4.
12. Hadrys, T., et al., The Trichoplax PaxB gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory cells. Mol Biol Evol, 2005. 22(7): p. 1569-78.
13. Horst, M.A.v.d., et al., From primary photochemistry to biological function in the blue-light photoreceptors PYP and AppA. Photochemical & Photobiological Sciences, 2005. 4(9): p. 688-693.
14. Iseki, M., et al., A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature, 2002. 415(6875): p. 1047-51.
15. Kreimer, G., Reflective properties of different eyespot types in dinoflagellates. Protist, 1999. 150(3): p. 311-23.
16. Panda, S., et al., Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting. Science, 2002. 298(5601): p. 2213-2216.
17. Pennisi, E., Evolution of developmental diversity. Evo-devo devotees eye ocular origins and more. Science, 2002. 296(5570): p. 1010-1.
18. Plachetzki, D.C., C.R. Fong, and T.H. Oakley, The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proceedings of the Royal Society B: Biological Sciences.
19. Prochnik, S.E., et al., Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri. Science, 2010. 329(5988): p. 223-226.
20. Purschwitz, J., et al., Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol, 2006. 9(6): p. 566-71.
21. Qiu, X., et al., Induction of photosensitivity by heterologous expression of melanopsin. Nature, 2005. 433(7027): p. 745-749.
22. Roger, A.J. and L.A. Hug, The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation. Philos Trans R Soc Lond B Biol Sci, 2006. 361(1470): p. 1039-54.
23. Terakita, A., The opsins. Genome Biology, 2005. 6(3): p. 213.
24. Vesteg, M., J. Krajcovic, and L. Ebringer, On the origin of eukaryotic cells and their endomembranes. Riv Biol, 2006. 99(3): p. 499-519.
25. Wells, J.G., Cooperation. Science, 1972. 176(4034): p. 459.
Ch3
1. Warrant, E.J. and D.E. Nilsson, Absorption of white light in photoreceptors. Vision Res, 1998. 38(2): p. 195-207.
2. Margulis, L. and D. Sagan, Acquiring genomes : a theory of the origins of species. 1st ed. 2002, New York: Basic Books. xvi, 240 p.
3. Nilsson, D.E., et al., Advanced optics in a jellyfish eye. Nature, 2005. 435(7039): p. 201-5.
4. Srivastava, M., et al., The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 2010. 466(7307): p. 720-726.
5. Kozmik, Z., et al., Assembly of the cnidarian camera-type eye from vertebrate-like components. Proceedings of the National Academy of Sciences, 2008. 105(26): p. 8989-8993.
6. Skogh, C., et al., Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol, 2006. 267(12): p. 1391-405.
7. Garm, A., M. Oskarsson, and D.-E. Nilsson, Box Jellyfish Use Terrestrial Visual Cues for Navigation. Current biology : CB, 2011. 21(9): p. 798-803.
8. Colley, N.J. and R.K. Trench, Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and a coelenterate. Cell Tissue Res, 1985. 239(1): p. 93-103.
9. Piatigorsky, J., et al., The cellular eye lens and crystallins of cubomedusan jellyfish. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989. 164(5): p. 577-587.
10. Hoppenrath, M. and B.S. Leander, CHARACTER EVOLUTION IN POLYKRIKOID DINOFLAGELLATES1. Journal of Phycology, 2007. 43(2): p. 366-377.
11. Passamaneck, Y.J., et al., Ciliary photoreceptors in the cerebral eyes of a protostome larva. Evodevo, 2011. 2(1): p. 6.
12. Collins, A.G. and J.W. Valentine, Defining phyla: evolutionary pathways to metazoan body plans. Evol Dev, 2001. 3(6): p. 432-42.
13. Larroux, C., et al., Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evolution & Development, 2006. 8(2): p. 150-173.
14. Clack, J.A., Devonian climate change, breathing, and the origin of the tetrapod stem group. Integrative and Comparative Biology. 47(4): p. 13.
15. Hofer, T., J.A. Sherratt, and P.K. Maini, Dictyostelium discoideum: Cellular Self-Organization in an Excitable Biological Medium. Proceedings: Biological Sciences, 1995. 259(1356): p. 249-257.
16. Alieva, N.O., et al., Diversity and evolution of coral fluorescent proteins. PLoS ONE, 2008. 3(7): p. e2680.
17. Tessmar-Raible, K. and D. Arendt, Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Current Opinion in Genetics & Development, 2003. 13(4): p. 331-340.
18. Anthony, M.P. and P. David, Evaluating hypotheses for the origin of eukaryotes. BioEssays, 2007. 29(1): p. 74-84.
19. Pennisi, E., EVOLUTION OF DEVELOPMENTAL DIVERSITY: Evo-Devo Devotees Eye Ocular Origins and More. Science, 2002. 296(5570): p. 1010-1011.
20. Collin, S.P., et al., The evolution of early vertebrate photoreceptors. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1531): p. 2925-40.
21. Shichida, Y. and T. Matsuyama, Evolution of opsins and phototransduction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1531): p. 2881-2895.
22. Lamb, T.D., S.P. Collin, and E.N. Pugh, Jr., Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci, 2007. 8(12): p. 960-76.
23. Matus, D.Q., et al., Expression of Pax gene family members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev, 2007. 9(1): p. 25-38.
24. Nilsson, D.E., Eye ancestry: old genes for new eyes. Curr Biol, 1996. 6(1): p. 39-42.
25. Nilsson, D.-E. and D. Arendt, Eye Evolution: The Blurry Beginning. Current biology : CB, 2008. 18(23): p. R1096-R1098.
26. Yamasu, T. and M. Yoshida, Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res, 1976. 170(3): p. 325-39.
27. Suga, H., et al., Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci U S A, 2010. 107(32): p. 14263-8.
28. Salih, A., et al., Fluorescent pigments in corals are photoprotective. Nature, 2000. 408(6814): p. 850-853.
29. Rompler, H., et al., G protein-coupled time travel: evolutionary aspects of GPCR research. Mol Interv, 2007. 7(1): p. 17-25.
30. Maria , C.R., Genomic Analyses and the Origin of the Eukaryotes. Chemistry & Biodiversity, 2007. 4(11): p. 2631-2638.
31. Derelle, R., et al., Homeodomain proteins belong to the ancestral molecular toolkit of eukaryotes. Evol Dev, 2007. 9(3): p. 212-9.
32. Schnapf, J.L. and D.A. Baylor, How photoreceptor cells respond to light. Sci Am, 1987. 256(4): p. 40-7.
33. Treisman, J.E., How to make an eye. Development, 2004. 131(16): p. 3823-7.
34. Dawson, W.W., Is the Brain Behind the Eye? Implications of Processing by the Retina. Invest. Ophthalmol. Vis. Sci., 1973. 12(6): p. 398-399.
35. Sun, H., et al., Isolation of Cladonema Pax-B genes and studies of the DNA-binding properties of cnidarian Pax paired domains. Mol Biol Evol, 2001. 18(10): p. 1905-18.
36. Plachetzki, D.C. and T.H. Oakley, Key transitions during the evolution of animal phototransduction: novelty, “tree-thinking,” co-option, and co-duplication. Integrative and Comparative Biology, 2007. 47(5): p. 759-769.
37. Albani, A.E., et al., Large colonial organisms with coordinated growth in oxygenated environments 2.1[thinsp]Gyr ago. Nature, 2010. 466(7302): p. 100-104.
38. Garm, A., et al., The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2007. 193(5): p. 547-57.
39. Levy, O., et al., Light-responsive cryptochromes from a simple multicellular animal, the coral Acropora millepora. Science, 2007. 318(5849): p. 467-70.
40. Nelson, M.M., et al., Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids, 2000. 35(5): p. 551-9.
41. Pylilo, I.V., [Mitosis in regenerating comb row and the double-nucleated cells of Ctenophora]. Ontogenez, 1975. 6(2): p. 187-9.
42. Yokoyama, S., Molecular evolution of retinal and nonretinal opsins. Genes Cells, 1996. 1(9): p. 787-94.
43. Podar, M., et al., A molecular phylogenetic framework for the phylum Ctenophora using 18S rRNA genes. Mol Phylogenet Evol, 2001. 21(2): p. 218-30.
44. Hoppenrath, M., et al., Molecular phylogeny of ocelloid-bearing dinoflagellates (Warnowiaceae) as inferred from SSU and LSU rDNA sequences. BMC Evol Biol, 2009. 9: p. 116.
45. Schierwater, B., My favorite animal, Trichoplax adhaerens. BioEssays, 2005. 27(12): p. 1294-1302.
46. Neuronal control of swimming in jellyfish: a comparative story. Canadian Journal of Zoology, 2002. 80: p. 1654-1669.
47. Plachetzki, D.C., J.M. Serb, and T.H. Oakley, New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol, 2005. 20(9): p. 465-7.
48. Hartwick, R.F., Observations on the anatomy, behaviour, reproduction and life cycle of the cubozoan <i>Carybdea sivickisi</i>. Hydrobiologia, 1991. 216-217(1): p. 171-179.
49. Chentsov, B.V., [On the antimicrobial action of the tissues of Ctenophora Beroe cucumis fabr.]. Antibiotiki, 1962. 7: p. 900-2.
50. Francis, D., On the eyespot of the dinoflagellate, Nematodinium. J Exp Biol, 1967. 47(3): p. 495-501.
51. Welch, V., et al., Optical properties of the iridescent organ of the comb-jellyfish Beroe cucumis (Ctenophora). Phys Rev E Stat Nonlin Soft Matter Phys, 2006. 73(4 Pt 1): p. 041916.
52. Galliot, B. and D. Miller, Origin of anterior patterning: how old is our head? Trends in Genetics, 2000. 16(1): p. 1-5.
53. Plachetzki, D.C., B.M. Degnan, and T.H. Oakley, The origins of novel protein interactions during animal opsin evolution. PLoS ONE, 2007. 2(10): p. e1054.
54. Schwab, I.R. and A.A. Sadun, An out-pouching of the eye? Br J Ophthalmol, 2007. 91(9): p. 1107-8.
55. Catmull, J., et al., Pax-6 origins–implications from the structure of two coral pax genes. Dev Genes Evol, 1998. 208(6): p. 352-6.
56. Taddei-Ferretti, C. and C. Musio, Photobehaviour of Hydra (Cnidaria, Hydrozoa) and correlated mechanisms: a case of extraocular photosensitivity. Journal of Photochemistry and Photobiology B: Biology, 2000. 55(2-3): p. 88-101.
57. Nilsson, D.E., Photoreceptor Evolution: Ancient Siblings Serve Different Tasks. 2005. 15(3): p. R94-R96.
58. Photoreceptors of cnidarians. Canadian Journal of Zoology, 2002. 80: p. 1703-1722.
59. Martin, V.J., Photoreceptors of cnidarians. Canadian Journal of Zoology, 2002. 80(10): p. 1703.
60. Schierwater, B., D. de Jong, and R. DeSalle, Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. The International Journal of Biochemistry & Cell Biology, 2009. 41(2): p. 370-379.
61. Ender, A. and B. Schierwater, Placozoa Are Not Derived Cnidarians: Evidence from Molecular Morphology. Molecular Biology and Evolution, 2003. 20(1): p. 130-134.
62. Martindale, M.Q. and J.Q. Henry, Reassessing embryogenesis in the Ctenophora: the inductive role of e1 micromeres in organizing ctene row formation in the ‘mosaic’ embryo, Mnemiopsis leidyi. Development, 1997. 124(10): p. 1999-2006.
63. Korotkova, G.P. and I.V. Pylilo, [Regenerative phenomena in Ctenophora larvae]. Vestn Leningr Univ Biol, 1970. 1: p. 21-8.
64. Garm, A., et al., Rhopalia are integrated parts of the central nervous system in box jellyfish. Cell Tissue Res, 2006. 325(2): p. 333-343.
65. Kozmik, Z., et al., Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell, 2003. 5(5): p. 773-85.
66. Aronova, M.Z. and T.A. Kharkevich, [Secondary messengers in the locomotor-sensory system in primary multicellular organisms. Cytochemical study of inositol-containing compartments in receptor cell of Ctenophora and Coelenterata]. Zh Evol Biokhim Fiziol, 2001. 37(4): p. 315-22.
67. Colley, N.J. and R.K. Trench, Selectivity in Phagocytosis and Persistence of Symbiotic Algae by the Scyphistoma Stage of the Jellyfish Cassiopeia xamachana. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1983. 219(1214): p. 61-82.
68. Wehner, R., Sensory physiology: Brainless eyes. Nature, 2005. 435(7039): p. 157-159.
69. Nordstrom, K., et al., A simple visual system without neurons in jellyfish larvae. Proc Biol Sci, 2003. 270(1531): p. 2349-54.
70. Stierwald, M., et al., The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Developmental Biology, 2004. 274(1): p. 70-81.
71. Coates, M.M., et al., The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J Exp Biol, 2006. 209(Pt 19): p. 3758-65.
72. Hadrys, T., et al., The Trichoplax PaxB gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory cells. Mol Biol Evol, 2005. 22(7): p. 1569-78.
73. Hernandez-Nicaise, M.L., Ultrastructural evidence for a sensory-motor neuron in Ctenophora. Tissue Cell, 1974. 6(1): p. 43-7.
74. Siddiqui, I.A. and D.R. Viglierchio, Ultrastructure of photoreceptors in the marine nematode Deontostoma californicum. Journal of Ultrastructure Research, 1970. 32(5-6): p. 558-571.
75. Carpenter, K.S., M. Morita, and J.B. Best, Ultrastructure of the photoreceptor of the planarian Dugesia dorotocephala. I. Normal eye. Cell Tissue Res, 1974. 148(2): p. 143-58.
76. Garm, A., F. Andersson, and D.E. Nilsson, Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Res, 2008. 48(8): p. 1061-73.
77. Coates, M., Vision in cubozoan jellyfish, Tripedalia cystophora, in Biological Sciences. 2004, Stanford University: Palo Alto. p. 128.
78. Coates, M.M., Visual Ecology and Functional Morphology of Cubozoa (Cnidaria). Integrative and Comparative Biology, 2003. 43(4): p. 542-548.
79. Osorio, D. and D.E. Nilsson, Visual Pigments: Trading Noise for Fast Recovery. Current Biology, 2004. 14(24): p. R1051-R1053.
80. Lichtenegger, H.C., et al., Zinc and mechanical prowess in the jaws of Nereis, a marine worm. Proc Natl Acad Sci U S A, 2003. 100(16): p. 9144-9.
Ch4
1. Fritzsch, B. and J. Piatigorsky, Ancestry of photic and mechanic sensation? Science, 2005. 308(5725): p. 1113-4; author reply 1113-4.
2. Land, Michael F., Animal Eyes: Defending the Coat of Mail. Current biology : CB, 2011. 21(8): p. R273-R274.
3. Aizenberg, J., et al., Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature, 2001. 412(6849): p. 819-22.
4. Speiser, Daniel I., Douglas J. Eernisse, and S. Johnsen, A Chiton Uses Aragonite Lenses to Form Images. Current biology : CB, 2011. 21(8): p. 665-670.
5. Arendt, D., et al., Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain. Science, 2004. 306(5697): p. 869-871.
6. Booth, D., A.J. Stewart, and D. Osorio, Colour vision in the glow-worm Lampyris noctiluca (L.) (Coleoptera: Lampyridae): evidence for a green-blue chromatic mechanism. J Exp Biol, 2004. 207(Pt 14): p. 2373-8.
7. Nilsson, D.E., R. Odselius, and R. Elofsson, The compound eye of Leptodora kindtii (Cladocera). An adaptation to planktonic life. Cell Tissue Res, 1983. 230(2): p. 401-10.
8. Brandenburger, J.L. and R.M. Eakin, Cytochemical localization of acid phosphatase in light- and dark-adapted eyes of a polychaete worm, Nereis limnicola. Cell and Tissue Research, 1985. 242(3): p. 623-628.
9. Aizenberg, J. and G. Hendler, Designing efficient microlens arrays: lessons from Nature. Journal of Materials Chemistry, 2004. 14(14): p. 2066-2072.
10. Lacalli, T.C. and L.Z. Holland, The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1998. 353(1378): p. 1943-1967.
11. Birgit, R., Development and differentiation of the eye in <I>Platynereis dumerilii</I> (Annelida, Polychaeta). Journal of Morphology, 1992. 212(1): p. 71-85.
12. Arendt, D., et al., Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development, 2002. 129(5): p. 1143-1154.
13. Yuan, X., et al., An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 2011. 470(7334): p. 390-393.
14. Hendler, G., An echinoderm?Äôs eye view of photoreception and vision, in Echinoderms: Munchen. 2004, Taylor & Francis. p. 339-349.
15. Mellon, D., et al., Electrical interactions between the giant axons of a polychaete worm (Sabella penicillus L.). J Exp Biol, 1980. 84(1): p. 119-136.
16. Kaas, J.H., Evolution of nervous systems : a comprehensive reference. 2007, Elsevier Academic Press: Amsterdam ; Boston. p. 1-24.
17. Schwab, I.R., et al., Evolution of the tapetum. Trans Am Ophthalmol Soc, 2002. 100: p. 187-99; discussion 199-200.
18. Arendt, D., Evolutionary biology: Annelid who’s who. Nature, 2011. 471(7336): p. 44-45.
19. Lacalli, T., Evolutionary biology: light on ancient photoreceptors. Nature, 2004. 432(7016): p. 454-5.
20. Wada, H., Evolutionary history of free-swimming and sessile lifestyles in urochordates as deduced from 18S rDNA molecular phylogeny. Mol Biol Evol, 1998. 15(9): p. 1189-94.
21. Johnsen, S., Extraocular sensitivity to polarized light in an echinoderm. J Exp Biol, 1994. 195: p. 281-91.
22. Foster, K.W., Eye evolution: two eyes can be better than one. Curr Biol, 2009. 19(5): p. R208-10.
23. Fischer, A. and J. Brokelmann, [The eye of Platynereis dumerilii (Polychaeta): its fine structure in ontogenetic and adaptive change]. Z Zellforsch Mikrosk Anat, 1966. 71(2): p. 217-44.
24. Nilsson, D.-E., Eyes as Optical Alarm Systems in Fan Worms and Ark Clams. Philosophical Transactions: Biological Sciences, 1994. 346(1316): p. 195-212.
25. Yamasu, T., Fine structure and function of ocelli and sagittocysts of acoel flatworms. Hydrobiologia, 1991. 227(1): p. 273-282.
26. Yamasu, T. and M. Yoshida, Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res, 1976. 170(3): p. 325-39.
27. MacRae, E.K., The fine structure of photoreceptors in a marine flatworm. Cell Tissue Res, 1966. 75(2): p. 469-484.
28. Ermak, T.H. and R.M. Eakin, Fine structure of the cerebral and pygidial ocelli in Chone ecaudata (Polychaeta: Sabellidae). J Ultrastruct Res, 1976. 54(2): p. 243-60.
29. Eakin, R.M., J.A. Westfall, and M.J. Dennis, Fine structure of the eye of a nudibranch mollusc, Hermissenda crassicornis. J Cell Sci, 1967. 2(3): p. 349-58.
30. Pineda, D., et al., The genetic network of prototypic planarian eye regeneration is Pax6 independent. Development, 2002. 129(6): p. 1423-1434.
31. Finnerty, J.R., et al., Homeobox genes in the Ctenophora: identification of paired-type and Hox homologues in the atentaculate ctenophore, Beroe ovata. Mol Mar Biol Biotechnol, 1996. 5(4): p. 249-58.
32. Pradillon, F., et al., Influence of environmental conditions on early development of the hydrothermal vent polychaete Alvinella pompejana. J Exp Biol, 2005. 208(8): p. 1551-1561.
33. Meinertzhagen, I.A. and Y. Okamura, The larval ascidian nervous system: the chordate brain from its small beginnings. Trends Neurosci, 2001. 24(7): p. 401-10.
34. Hughes, H.P., The larval eye of the aeolid nudibranch Trinchesia aurantia (Alder and Hancock). Z Zellforsch Mikrosk Anat, 1970. 109(1): p. 55-63.
35. Fong, P.P., Lunar Control of Epitokal Swarming in the Polychaete Platynereis Bicanaliculata (Baird) from Central California. Bulletin of Marine Science, 1993. 52: p. 911-924.
36. Duque, C., et al., Main sterols from the ophiuroids Ophiocoma echinata, Ophiocoma wendtii, Ophioplocus januarii and Ophionotus victoriae. Biochemical Systematics and Ecology, 1997. 25(8): p. 775-778.
37. Graham, D.M., et al., Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol, 2008. 99(5): p. 2522-32.
38. Hattar, S., et al., Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity. Science, 2002. 295(5557): p. 1065-1070.
39. Inoue, T., et al., Morphological and Functional Recovery of the Planarian Photosensing System during Head Regeneration. Zoological Science, 2004. 21(3): p. 275-283.
40. Plachetzki, D.C., J.M. Serb, and T.H. Oakley, New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol, 2005. 20(9): p. 465-7.
41. Fu, Y., et al., Non-image-forming ocular photoreception in vertebrates. Curr Opin Neurobiol, 2005. 15(4): p. 415-22.
42. Knight, A. and D.P. Mindell, On the Phylogenetic Relationship of Colubrinae, Elapidae, and Viperidae and the Evolution of Front-Fanged Venom Systems in Snakes. Copeia, 1994. 1994(1): p. 1-9.
43. Fischer, A., [on the Structure and Light-Dark Adaptation of the Eyes of the Polychaete Platynereis Dumerilii.]. Z Zellforsch Mikrosk Anat, 1963. 61: p. 338-53.
44. Bellingham, J. and R. Foster, Opsins and mammalian photoentrainment. Cell Tissue Res, 2002. 309(1): p. 57-71.
45. Galliot, B. and D. Miller, Origin of anterior patterning. How old is our head? Trends Genet, 2000. 16(1): p. 1-5.
46. Stoll, C.J., Peripheral and central photoreception in Aplysia fasciata. Malacologia, 1979. 18(1-2): p. 459-63.
47. Pernet, B., Persistent Ancestral Feeding Structures in Nonfeeding Annelid Larvae. Biol Bull, 2003. 205(3): p. 295-307.
48. Purschke, G., et al., Photoreceptor cells and eyes in Annelida. Arthropod Struct Dev, 2006. 35(4): p. 211-230.
49. Nilsson, D.E., Photoreceptor evolution: ancient siblings serve different tasks. Curr Biol, 2005. 15(3): p. R94-6.
50. Kretz, J.R., G.S. Stent, and W.B. Kristan, Photosensory input pathways in the medicinal leech. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1976. 106(1): p. 1-37.
51. Sempere, L.F., et al., Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evolution & Development, 2007. 9(5): p. 409-415.
52. Struck, T.H., et al., Phylogenomic analyses unravel annelid evolution. Nature, 2011. 471(7336): p. 95-8.
53. Albrecht, F. and D. Adriaan, The polychaete <I>Platynereis dumerilii</I> (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. BioEssays, 2004. 26(3): p. 314-325.
54. Arendt, D. and J. Wittbrodt, Reconstructing the eyes of Urbilateria. Philos Trans R Soc Lond B Biol Sci, 2001. 356(1414): p. 1545-63.
55. Isoldi, M.C., et al., Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(4): p. 1217-1221.
56. Asano, Y., et al., Rhodopsin-like proteins in planarian eye and auricle: detection and functional analysis. J Exp Biol, 1998. 201(9): p. 1263-1271.
57. Mallatt, J. and C.J. Winchell, Ribosomal RNA genes and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol, 2007. 43(3): p. 1005-22.
58. Madin, L.P., Sensory ecology of salps (Tunicata, thaliacea): More questions than answers. Marine and Freshwater Behaviour and Physiology, 1995. 26(2): p. 175 – 195.
59. Sutton, M.D., D.E. Briggs, and D.J. Siveter, A three-dimensionally preserved fossil polychaete worm from the Silurian of Herefordshire, England. Proc Biol Sci, 2001. 268(1483): p. 2355-63.
60. Delsuc, F., et al., Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 2006. 439(7079): p. 965-968.
61. Gregory, T., Understanding Evolutionary Trees. Evolution: Education and Outreach, 2008. 1(2): p. 121-137.
62. Eakin, R.M. and J.L. Brandenberger, Unique eye of probable evolutionary significance. Science, 1981. 211(4487): p. 1189-1190.
63. Osorio, D. and D.E. Nilsson, Visual pigments: trading noise for fast recovery. Curr Biol, 2004. 14(24): p. R1051-3.
Ch5
1. Briggs, D.E.G., The Arthropod Odaraia alata Walcott, Middle Cambrian, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1981. 291(1056): p. 541-582.
2. Briggs, D.E.G. and D. Collins, The Arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology, 1999. 42(6): p. 953-977.
3. Brigitte, S., et al., A miniscule optimized visual system in the Lower Cambrian. Lethaia, 2009. 42(3): p. 265-273.
4. Clarkson, E., R. Levi-Setti, and G. Horvath, The eyes of trilobites: The oldest preserved visual system. Arthropod Struct Dev, 2006. 35(4): p. 247-59.
5. Collins, D., The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology, 1996. 70(2): p. 280-293.
6. Cowen, R. and J.S. Kelley, Stereoscopic vision within the schizochroal eye of trilobites. Nature, 1976. 261(5556): p. 130-131.
7. Fischer, S., C.H. Muller, and V.B. Meyer-Rochow, How small can small be: The compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size. Vis Neurosci, 2010: p. 1-14.
8. Fordyce, D. and T.W. Cronin, Comparison of Fossilized Schizochroal Compound Eyes of Phacopid Trilobites with Eyes of Modern Marine Crustaceans and Other Arthropods. Journal of Crustacean Biology, 1989. 9(4): p. 554-569.
9. Fordyce, D. and T.W. Cronin, Trilobite Vision: A Comparison of Schizochroal and Holochroal Eyes with the Compound Eyes of Modern Arthropods. Paleobiology, 1993. 19(3): p. 288-303.
10. Fortey, R. and B. Chatterton, A Devonian trilobite with an eyeshade. Science, 2003. 301(5640): p. 1689.
11. Gabriel, W.N., et al., The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Developmental Biology, 2007. 312(2): p. 545-559.
12. Gál, J., G. Horváth, and E.N.K. Clarkson, Reconstruction of the shape and optics of the lenses in the abathochroal-eyed trilobite <i>Neocobboldia chinlinica</i>. Historical Biology: An International Journal of Paleobiology, 2000. 14(4): p. 193 – 204.
13. Gál, J., et al., Image formation by bifocal lenses in a trilobite eye? Vision Res, 2000. 40(7): p. 843-853.
14. Gee, H., On being vetulicolian. Nature, 2001. 414(6862): p. 407, 409.
15. Gould, S.J., Wonderful life : the Burgess Shale and the nature of history. 1st ed. 1989, New York: W.W. Norton. 347 p.
16. Greven, H., Comments on the eyes of tardigrades. Arthropod Struct Dev, 2007. 36(4): p. 401-7.
17. Horváth, G., E.N.K. Clarkson, and W. Pix, Survey of modern counterparts of schizochroal trilobite eyes: Structural and functional similarities and differences. Historical Biology: An International Journal of Paleobiology, 1997. 12(3): p. 229 – 263.
18. Levinton, J.S., The big bang of animal evolution. Sci Am, 1992. 267(5): p. 84-91.
19. Levi-Setti, R., Trilobites. 2nd ed. 1993, Chicago: University of Chicago Press. 342.
20. Liu, J., et al., An armoured Cambrian lobopodian from China with arthropod-like appendages. Nature, 2011. 470(7335): p. 526-530.
21. Mayer, G., Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthropod Struct Dev, 2006. 35(4): p. 231-45.
22. Mayer, G. and S. Harzsch, Immunolocalization of serotonin in Onychophora argues against segmental ganglia being an ancestral feature of arthropods. BMC Evolutionary Biology, 2007. 7(1): p. 118.
23. Nelson, D.R., Current Status of the Tardigrada: Evolution and Ecology1. 2002. p. 652-659.
24. Nelson, D.R., Current Status of the Tardigrada: Evolution and Ecology. Integrative and Comparative Biology, 2002. 42(3): p. 652-659.
25. Ohno, S., The reason for as well as the consequence of the Cambrian explosion in animal evolution. J Mol Evol, 1997. 44 Suppl 1: p. S23-7.
26. Parker, A., In the blink of an eye. 2003, Cambridge, Mass.: Perseus Pub. xviii, 316 p., [16] p. of plates.
27. Parker, A.R., Colour in Burgess Shale Animals and the Effect of Light on Evolution in the Cambrian. Proceedings: Biological Sciences, 1998. 265(1400): p. 967-972.
28. Schoenemann, B., Cambrian view. Palaeoworld. 15(3-4): p. 307-314.
29. Schoenemann, B., et al., A miniscule optimized visual system in the Lower Cambrian. Lethaia, 2009. 42(3): p. 265-273.
30. Shu, D.G., et al., Primitive deuterostomes from the Chengjiang Lagerstatte (Lower Cambrian, China). Nature, 2001. 414(6862): p. 419-24.
31. Shu, D.G., et al., Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 2003. 421(6922): p. 526-9.
32. Stockton, W.L. and R. Cowen, Stereoscopic Vision in One Eye: Paleophysiology of the Schizochroal Eye of Trilobites. Paleobiology, 1976. 2(4): p. 304-315.
33. Tautz, D., Evolutionary biology: Debatable homologies. Nature, 1998. 395(6697): p. 17-19.
34. Tessmar-Raible, K. and D. Arendt, Emerging systems: between vertebrates and arthropods, the Lophotrochozoa. Current Opinion in Genetics & Development, 2003. 13(4): p. 331-340.
35. Valentine, J.W., D. Jablonski, and D.H. Erwin, Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development, 1999. 126(5): p. 851-9.
36. Van Roy, P., et al., Ordovician faunas of Burgess Shale type. Nature, 2010. 465(7295): p. 215-218.
37. Whittington, H.B., The Enigmatic Animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia. 1975. p. 1-43.
38. Zhang, X. and D. Shu, SOFT ANATOMY OF SUNELLID ARTHROPODS FROM THE CHENGJIANG LAGERSTÄTTE, LOWER CAMBRIAN OF SOUTHWEST CHINA. Journal of Paleontology, 2007. 81(6): p. 1412-1422.
Ch6
1. Andrews, E.A., Compound eyes of annelids. Journal of Morphology, 1891. 5(2): p. 271-299.
2. Baldwin, J.D., et al., Molecular Phylogeny and Biogeography of the Marine ShrimpPenaeus. Molecular Phylogenetics and Evolution, 1998. 10(3): p. 399-407.
3. Battelle, B.A., The eyes of Limulus polyphemus (Xiphosura, Chelicerata) and their afferent and efferent projections. Arthropod Struct Dev, 2006. 35(4): p. 261-74.
4. Boles, L.C. and K.J. Lohmann, True navigation and magnetic maps in spiny lobsters. Nature, 2003. 421(6918): p. 60-63.
5. Briggs, D.E.G. and D. Collins, The Arthropod Alalcomenaeus cambricus Simonetta, from the Middle Cambrian Burgess Shale of British Columbia. Palaeontology, 1999. 42(6): p. 953-977.
6. Callaerts, P., et al., Pax6 and eye development in Arthropoda. Arthropod Struct Dev, 2006. 35(4): p. 379-91.
7. Chiou, T.H., et al., Circular polarization vision in a stomatopod crustacean. Curr Biol, 2008. 18(6): p. 429-34.
8. Cronin, T. and M. Porter, Exceptional Variation on a Common Theme: The Evolution of Crustacean Compound Eyes. Evolution: Education and Outreach, 2008. 1(4): p. 463-475.
9. Cronin, T.W. and C.A. King, Spectral Sensitivity of Vision in the Mantis Shrimp, Gonodactylus oerstedii, Determined Using Noninvasive Optical Techniques. Biol Bull, 1989. 176(3): p. 308-316.
10. Cronin, T.W., N.J. Marshall, and R.L. Caldwell, Spectral tuning and the visual ecology of mantis shrimps. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2000. 355(1401): p. 1263-1267.
11. Cronin, T.W., et al., Specialization of retinal function in the compound eyes of mantis shrimps. Vision Res, 1994. 34(20): p. 2639-56.
12. Cronin, T.W., N.J. Marshall, and M.F. Land, The Unique Visual System of the Mantis Shrimp. American Scientist, 1994. 82(4): p. 356.
13. Dahl, D. and C.C. Krischer, Evidence for a bistable photopigment contained in barnacle median photoreceptor. Vision Res, 1976. 16(10): p. 1188-90.
14. Doughtie, D.G. and K.R. Rao, Ultrastructure of the eyes of the grass shrimp, <i>Palaemonetes pugio</i>. Cell and Tissue Research, 1984. 238(2): p. 271-288.
15. Douglass, J.K. and R.B. Forward, The ontogeny of facultative superposition optics in a shrimp eye: hatching through metamorphosis. Cell and Tissue Research, 1989. 258(2): p. 289-300.
16. Elofsson, R., The frontal eyes of crustaceans. Arthropod Struct Dev, 2006. 35(4): p. 275-91.
17. Exner, S. and R.C. Hardie, The physiology of the compound eyes of insects and crustaceans : a study. 1989, Berlin ; New York: Springer-Verlag. xv, 177 p.
18. Fernald, R.D., The evolution of eyes. Brain Behav Evol, 1997. 50(4): p. 253-9.
19. Fryer, G., A defence of arthropod polyphyly. 1998, Chapman & Hall Ltd: London. p. 23-33.
20. Gaten, E., Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea). Contributions to Zoology, 1998. 67(4): p. 223-236.
21. Gaten, E., Apposition compound eyes of Spongicoloides koehleri (Crustacea : Spongicolidae) are derived by neoteny. Journal of the Marine Biological Association of the United Kingdom, 2007. 87(2): p. 483-486.
22. Gaten, E. and P.J. Herring, Morphology of the reflecting superposition eyes of larval oplophorid shrimps. Journal of Morphology, 1995. 225(1): p. 19-29.
23. Gupta, A.P., Arthropod phylogeny. 1979, New York: Van Nostrand Reinhold. xx, 762 p.
24. Hafner, et al., Retinal development in the lobster Homarus americanus. Cell and Tissue Research, 2001. 305(1): p. 147-158.
25. Harzsch, S. and G. Hafner, Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Struct Dev, 2006. 35(4): p. 319-40.
26. Harzsch, S. and R. Melzer, Origin and evolution of arthropod visual systems. Introduction. Arthropod Struct Dev, 2006. 35(4): p. 209-10.
27. Harzsch, S., et al., Evolution of arthropod visual systems: Development of the eyes and central visual pathways in the horseshoe crab Limulus polyphemus Linnaeus, 1758 (Chelicerata, Xiphosura). Developmental Dynamics, 2006. 235(10): p. 2641-2655.
28. Harzsch, S. and D. Walossek, Neurogenesis in the developing visual system of the branchiopod crustacean Triops longicaudatus (LeConte, 1846): corresponding patterns of compound-eye formation in Crustacea and Insecta? Dev Genes Evol, 2001. 211(1): p. 37-43.
29. Irving, T.H.K., A.G. Peele, and K.A. Nugent, Optical metrology for analysis of lobster-eye x-ray optics. Appl. Opt., 2003. 42(13): p. 2422-2430.
30. Kennedy, D. and M.S. Bruno, The spectral sensitivity of crayfish and lobster vision. J Gen Physiol, 1961. 44: p. 1089-102.
31. Keskinen, E. and V.B. Meyer-Rochow, Post-embryonic photoreceptor development and dark/light adaptation in the spittle bug Philaenus spumarius (L.) (Homoptera, Cercopidae). Arthropod Struct Dev, 2004. 33(4): p. 405-417.
32. Labhart, T. and C.A. Wiersma, Habituation and inhibition in a class of visual interneurons of the rock lobster, Panulirus interruptus. Comp Biochem Physiol A Comp Physiol, 1976. 55(3): p. 219-24.
33. Lai, E.C., Developmental signaling: shrimp and strawberries help flies make cones. Curr Biol, 2002. 12(21): p. R722-4.
34. Land, M.F., Compound eyes: old and new optical mechanisms. Nature, 1980. 287(5784): p. 681-686.
35. Land, M.F., VISUAL ACUITY IN INSECTS. Annual Review of Entomology, 1997. 42(1): p. 147-177.
36. Land, M.F. and D.E. Nilsson, Observations on the Compound Eyes of the Deep-Sea Ostracod Macrocypridina Castanea. J Exp Biol, 1990. 148(1): p. 221-233.
37. Lau, T.F.S., E. Gross, and V.B. Meyer-Rochow, Sexual dimorphism and light/dark adaptation in the compound eyes of male and female Acentria ephemerella (Lepidoptera: Pyraloidea: Crambidae). 2007, Universität Konstanz.
38. Lavery, S., et al., Phylogenetic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Molecular Phylogenetics and Evolution, 2004. 31(1): p. 39-49.
39. Lester, L. Split-Thumb Mantis Shrimp (Gonodactylus bredini). Marine Invertebrates of Bermuda 2008; Available from: http://www.thecephalopodpage.org/MarineInvertebrateZoology/Gonodactylusbredini.html.
40. Marshall, J., T.W. Cronin, and S. Kleinlogel, Stomatopod eye structure and function: a review. Arthropod Struct Dev, 2007. 36(4): p. 420-48.
41. Marshall, J., et al., Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol, 1999. 9(14): p. 755-8.
42. Marshall, J. and J. Oberwinkler, The colourful world of the mantis shrimp. Nature, 1999. 401(6756): p. 873-4.
43. Marshall, N.J. and M.F. Land, Some optical features of the eyes of stomatopods. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993. 173(5): p. 565-582.
44. Melzer, R.R., et al., Compound Eye Evolution: Highly Conserved Retinula and Cone Cell Patterns Indicate a Common Origin of the Insect and Crustacean Ommatidium. Naturwissenschaften, 1997. 84(12): p. 542-544.
45. Meyer-Rochow, V.B., Larval and adult eye of the Western Rock Lobster (Panulirus longipes). Cell and Tissue Research, 1975. 162(4): p. 439-457.
46. Meyer-Rochow, V.B. and J. Gal, Dimensional limits for arthropod eyes with superposition optics. Vision Res, 2004. 44(19): p. 2213-23.
47. Muller, C.H., A. Sombke, and J. Rosenberg, The fine structure of the eyes of some bristly millipedes (Penicillata, Diplopoda): additional support for the homology of mandibulate ommatidia. Arthropod Struct Dev, 2007. 36(4): p. 463-76.
48. Nilsson, D.-E., Three unexpected cases of refracting superposition eyes in crustaceans. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990. 167(1): p. 71-78.
49. Nilsson, D.E., Evolutionary links between apposition and superposition optics in crustacean eyes. Nature, 1983. 302(5911): p. 818-821.
50. Nilsson, D.E., A new type of imaging optics in compound eyes. Nature, 1988. 332(6159): p. 76-78.
51. Nilsson, D.E., From cornea to retinal image in invertebrate eyes. Trends Neurosci, 1990. 13(2): p. 55-64.
52. Nilsson, D.E. and A. Kelber, A functional analysis of compound eye evolution. Arthropod Struct Dev, 2007. 36(4): p. 373-85.
53. Nilsson, D.E. and R. Modlin, A Mysid Shrimp Carrying a Pair of Binoculars. J Exp Biol, 1994. 189(1): p. 213-36.
54. Nilsson, D.E. and D. Osorio, Homology and parallelism in arthropod sensory processing. 1998, Chapman & Hall Ltd: London. p. 333-347.
55. Nilsson, D.-E. and A. Kelber, A functional analysis of compound eye evolution. Arthropod Struct Dev, 2007. 36(4): p. 373-385.
56. Oakley, T.H. and C.W. Cunningham, Molecular phylogenetic evidence for the independent evolutionary origin of an arthropod compound eye. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(3): p. 1426-1430.
57. Oakley, T.H., D.C. Plachetzki, and A.S. Rivera, Furcation, field-splitting, and the evolutionary origins of novelty in arthropod photoreceptors. Arthropod Struct Dev, 2007. 36(4): p. 386-400.
58. Osorio, D. and J.P. Bacon, A good eye for arthropod evolution. Bioessays, 1994. 16(6): p. 419-24.
59. Parker, A.R., Natural photonic engineers. Materials Today, 2002. 5(9): p. 26-31.
60. Parker, A.R., et al., Photonic engineering. Aphrodite’s iridescence. Nature, 2001. 409(6816): p. 36-7.
61. Patek, S.N. and R.L. Caldwell, Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. Journal of Experimental Biology, 2005. 208(19): p. 3655-3664.
62. Patek, S.N., W.L. Korff, and R.L. Caldwell, Biomechanics: Deadly strike mechanism of a mantis shrimp. Nature, 2004. 428(6985): p. 819-820.
63. Patek, S.N., et al., Linkage mechanics and power amplification of the mantis shrimp’s strike. 2007. p. 3677-3688.
64. Presgraves, D.C., et al., Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature, 2003. 423(6941): p. 715-719.
65. Quan, J., et al., Phylogenetic Relationships of 12 Penaeoidea Shrimp Species Deduced from Mitochondrial DNA Sequences. Biochemical Genetics, 2004. 42(9): p. 331-345.
66. Sandeman, D.C., G. Scholtz, and R.E. Sandeman, Brain evolution in decapod crustacea. Journal of Experimental Zoology, 1993. 265(2): p. 112-133.
67. Schiff, H., R.B. Manning, and B.C. Abbott, Structure and Optics of Ommatidia from Eyes of Stomatopod Crustaceans from Different Luminous Habitats. Biological Bulletin, 1986. 170(3): p. 461-480.
68. Smith, W.C., et al., Opsins from the lateral eyes and ocelli of the horseshoe crab, Limulus polyphemus. Proc Natl Acad Sci U S A, 1993. 90(13): p. 6150-4.
69. Staton, J.L., L.L. Daehler, and W.M. Brown, Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes. Mol Biol Evol, 1997. 14(8): p. 867-74.
70. Stavenga, D.G. and R.C. Hardie, Facets of vision. 1989, Springer-Verlag: Berlin ; New York. p. 30-73.
71. Stavenga, D.G.H., Steffen;, Origin and evolution of arthropod visual systems: Introduction to Part II. Arthropod Structure & Development, 2007. 36: p. 371-372.
72. Toh, Y., Diurnal Changes of Rhabdom Structures in the Compound Eye of the Grapsid Crab, Hemigrapsus penicillatus. J Electron Microsc (Tokyo), 1987. 36(4): p. 213-223.
73. Trevor, J.C. and J.B. Simon, The phylogeny of arachnomorph arthropods and the origin of the Chelicerata. Transactions: Earth Sciences, 2004. 94: p. 169-193.
74. Vogt, K., Die Spiegeloptik des Flußkrebsauges. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980. 135(1): p. 1-19.
75. Wiersma, C.A.G. and T. Yamaguchi, The integration of visual stimuli in the rock lobster. Vision Res, 1967. 7(3-4): p. 197-203, IN1-IN2.
76. Wiersma, C.A.G. and B. York, Properties of the seeing fibers in the rock lobster: Field structure, habituation, attention and distraction. Vision Res, 1972. 12(4): p. 627-640, IN1-IN5.
77. Wilkens, L.A. and J.L. Larimer, The CNS Photoreceptor of crayfish: Morphology and synaptic activity. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1972. 80(4): p. 389-407.
78. Wolburg-Buchholz, K., The superposition eye of Cloeon dipterum: The organization of the lamina ganglionaris. Cell and Tissue Research, 1977. 177(1): p. 9-28.
79. Wolken, J.J. and G.J. Gallik, The Compound Eye of a Crustacean, Leptodora Kindtii. J Cell Biol, 1965. 26(3): p. 968-73.
80. Wolpert, H.D., An Eye Toward Multispectral Imaging. Optics and Photonics News, 2011. 22(4): p. 16-20.
81. York, B. and C.A. Wiersma, Visual processing in the rock lobster (crustacea). Prog Neurobiol, 1975. 5(2): p. 127-66.
Ch7
1. Blair, J.E. and S.B. Hedges, Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol, 2005. 22(11): p. 2275-84.
2. Butler, A.B., Sensory system evolution at the origin of craniates. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1309-13.
3. Cloney, R.A., Ascidian Larvae and the Events of Metamorphosis. Amer. Zool., 1982. 22(4): p. 817-826.
4. Collin, S.P., A.P.F. David J. McKenzie, and J.B. Colin, Nervous and Sensory Systems, in Fish Physiology. 2007, Academic Press. p. 121-179.
5. Collin, S.P., et al., Morphology and Spectral Absorption Characteristics of Retinal Photoreceptors in the Southern Hemisphere Lamprey (Geotria australis). 2003.
6. Collin, S.P., et al., Vision in the Southern Hemisphere Lamprey Mordacia Mordax: Spatial Distribution, Spectral Absorption Characteristics, and Optical Sensitivity of a Single Class of Retinal Photoreceptor. 2004.
7. Collin, S.P., et al., Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Current Biology, 2003. 13(22): p. R864-R865.
8. Collin, S.P., I.C. Potter, and C.R. Braekevelt, The ocular morphology of the southern hemisphere lamprey geotria australis gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behav Evol, 1999. 54(2): p. 96-118.
9. Collin, S.P. and I.C. Pottert, The ocular morphology of the southern hemisphere lamprey Mordacia mordax Richardson with special reference to a single class of photoreceptor and a retinal tapetum. Brain Behav Evol, 2000. 55(3): p. 120-38.
10. Collin, S.P. and A.E.O. Trezise, The origins of colour vision in vertebrates. Clinical and Experimental Optometry, 2004. 87(4-5): p. 217-223.
11. Cronin, T.W. and N.J. Marshall, A retina with at least ten spectral types of photoreceptors in a mantis shrimp. Nature, 1989. 339(6220): p. 137-140.
12. Donoghue, P.C.J., P.L. Forey, and R.J. Aldridge, Conodont affinity and chordate phylogeny. Biological Reviews, 2000. 75(2): p. 191-251.
13. Fernholm, B. and K. Holmberg, The eyes in three genera of hagfish (Eptatretus, paramyxine andMyxine)–A case of degenerative evolution. Vision Research, 1975. 15(2): p. 253-259, IN1-IN4.
14. Gess, R.W., M.I. Coates, and B.S. Rubidge, A lamprey from the Devonian period of South Africa. Nature, 2006. 443(7114): p. 981-4.
15. Gill, H.S., et al., Phylogeny of Living Parasitic Lampreys (Petromyzontiformes) Based on Morphological Data. Copeia, 2003. 2003(4): p. 687-703.
16. Gustafsson, O.S.E., P. Ekström, and R.H.H. Kröger, A fibrous membrane suspends the multifocal lens in the eyes of lampreys and African lungfishes. Journal of Morphology, 2010. 271(8): p. 980-989.
17. Holland, L.Z., Developmental biology: A chordate with a difference. Nature, 2007. 447(7141): p. 153-155.
18. Janvier, P., Palaeontology: Modern look for ancient lamprey. Nature, 2006. 443(7114): p. 921-924.
19. Janvier, P., Evolutionary biology: born-again hagfishes. Nature, 2007. 446(7136): p. 622-3.
20. Kuo, C.-H., S. Huang, and S.-C. Lee, Phylogeny of hagfish based on the mitochondrial 16S rRNA gene. Molecular Phylogenetics and Evolution, 2003. 28(3): p. 448-457.
21. Kuratani, S. and K.G. Ota, Hagfish (cyclostomata, vertebrata): searching for the ancestral developmental plan of vertebrates. Bioessays, 2008. 30(2): p. 167-72.
22. Kusunoki, T. and F. Amemiya, Retinal projections in the hagfish, Eptatretus burgeri. Brain Research, 1983. 262(2): p. 295-298.
23. Lacalli, T., Evolutionary biology: Body plans and simple brains. Nature, 2003. 424(6946): p. 263-4.
24. Lacalli, T.C., Frontal Eye Circuitry, Rostral Sensory Pathways and Brain Organization in Amphioxus Larvae: Evidence from 3D Reconstructions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1996. 351(1337): p. 243-263.
25. Lacalli, T.C., New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. Philos Trans R Soc Lond B Biol Sci, 2001. 356(1414): p. 1565-72.
26. Lacalli, T.C., Sensory Systems in Amphioxus: A Window on the Ancestral Chordate Condition. Brain Behav Evol, 2004. 64(3): p. 148-162.
27. Lacalli, T.C. and L.Z. Holland, The developing dorsal ganglion of the salp Thalia democratica, and the nature of the ancestral chordate brain. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 1998. 353(1378): p. 1943-1967.
28. Lacalli, T.C., N.D. Holland, and J.E. West, Landmarks in the Anterior Central Nervous System of Amphioxus Larvae. Philosophical Transactions: Biological Sciences, 1994. 344(1308): p. 165-185.
29. Ladich, F., Communication in fishes. 2006, Enfield, (NH): Science Publishers.
30. Lamb, T.D., S.P. Collin, and E.N. Pugh, Jr., Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci, 2007. 8(12): p. 960-76.
31. Mallatt, J. and J.-y. Chen, Fossil sister group of craniates: Predicted and found. Journal of Morphology, 2003. 258(1): p. 1-31.
32. Maximov, V.V., Environmental factors which may have led to the appearance of colour vision. 2000. p. 1239-1242.
33. Maximov, V.V., Environmental factors which may have led to the appearance of colour vision. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1239-42.
34. Meyer-Rochow, V.B., Axonal wiring and polarisation sensitivity in eye of the rock lobster. Nature, 1975. 254(5500): p. 522-523.
35. Meyer-Rochow, V.B.S., D., Scanning electron microscopy of supporting cell crystals in the larval pineal organ of the southern lamprey Geotria australis (Gray). Zoologischer Anzeiger, 1994. 232(5/6): p. 6.
36. Millar, R.H., S.R. Frederick, and Y. Maurice, The Biology of Ascidians, in Advances in Marine Biology. 1971, Academic Press. p. 1-100.
37. Nicholas, D.H., Hagfish embryos again – the end of a long drought. BioEssays, 2007. 29(9): p. 833-836.
38. Nilsson, D.-E. and S. Pelger, A Pessimistic Estimate of the Time Required for an Eye to Evolve. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1994. 256(1345): p. 53-58.
39. Northcutt, R.G., Lancelet lessons: evaluating a phylogenetic model. J Comp Neurol, 2001. 435(4): p. 391-3.
40. Ooka-Souda, S., et al., A possible retinal information route to the circadian pacemaker through pretectal areas in the hagfish, Eptatretus burgeri. Neuroscience Letters, 1995. 192(3): p. 201-204.
41. Rovainen, C.M., Vestibulo-ocular reflexes in the adult sea lamprey. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1976. 112(2): p. 159-164.
42. Schoenemann, B., et al., A miniscule optimized visual system in the Lower Cambrian. Lethaia, 2009. 42(3): p. 265-273.
43. Shaun, P.C. and E.O.T. Ann, The origins of colour vision in vertebrates. Clinical and Experimental Optometry, 2004. 87(4-5): p. 217-223.
44. Shu, D. and S.C. Morris, Response to Comment on “A New Species of Yunnanozoan with Implications for Deuterostome Evolution”. Science, 2003. 300(5624): p. 1372.
45. Shu, D.G., et al., Lower Cambrian vertebrates from south China. Nature, 1999. 402(6757): p. 42-46.
46. Shu, D.G., et al., Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 2003. 421(6922): p. 526-529.
47. Shu, D.G., S.C. Morris, and X.L. Zhang, A Pikaia-like chordate from the Lower Cambrian of China. Nature, 1996. 384(6605): p. 157-158.
48. Sweet, W.C. and P.C.J. Donoghue, CONODONTS: PAST, PRESENT, FUTURE. 2001. p. 1174-1184.
49. Takezaki, N., et al., Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. Mol Biol Evol, 2003. 20(2): p. 287-92.
50. Trinajstic, K., et al., Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biol Lett, 2007. 3(2): p. 197-200.
51. Vigh-Teichmann, I., et al., Opsin-immunoreactive outer segments of photoreceptors in the eye and in the lumen of the optic nerve of the hagfish, Myxine glutinosa. Cell Tissue Res, 1984. 238(3): p. 515-22.
52. Vorobyev, M., Ecology and evolution of primate colour vision. Clin Exp Optom, 2004. 87(4-5): p. 230-238.
53. Wicht, H. and T.C. Lacalli, The nervous system of amphioxus: structure, development, and evolutionary significance. Canadian Journal of Zoology, 2005. 83: p. 122-150.
54. Xian-guang, H., et al., New evidence on the anatomy and phylogeny of the earliest vertebrates. 2002. p. 1865-1869.
55. Xian-guang, H., et al., New evidence on the anatomy and phylogeny of the earliest vertebrates. Proc Biol Sci, 2002. 269(1503): p. 1865-9.
56. Young, G., Early Evolution of the Vertebrate Eye—Fossil Evidence. Evolution: Education and Outreach, 2008. 1(4): p. 427-438.
Ch8
1. Barber, V.C., E.M. Evans, and M.F. Land, The fine structure of the eye of the mollusc Pecten maximus. Z Zellforsch Mikrosk Anat, 1967. 76(3): p. 25-312.
2. Bever, M.M. and R.B. Borgens, Eye regeneration in the mystery snail. J Exp Zool, 1988. 245(1): p. 33-42.
3. Block, G.D. and D.G. McMahon, Localized illumination of the Aplysia and Bulla eye reveals new relationships between retinal layers. Brain Res, 1983. 265(1): p. 134-7.
4. Blumer, M., Alterations of the eyes during ontogenesis inAporrhais pespelecani (Mollusca, Caenogastropoda). Zoomorphology, 1996. 116(3): p. 123-131.
5. Cronly-Dillon, J.R., Spectral Sensitivity of the Scallop Pecten maximus. Science, 1966. 151(3708): p. 345-6.
6. Eakin, R.M. and J.L. Brandenburger, Understanding A Snail’s Eye at a Snail’s Pace. Amer. Zool., 1975. 15(4): p. 851-863.
7. Eakin, R.M. and J.L. Brandenburger, Retinal differences between light-tolerant and light-avoiding slugs (Mollusca: Pulmonata). Journal of Ultrastructure Research, 1975. 53(3): p. 382-394.
8. Frýda, J. and R.B. Blodgett, Two New Cirroidean Genera (Vetigastropoda, Archaeogastropoda) from the Emsian (Late Early Devonian) of Alaska with Notes on the Early Phylogeny of Cirroidea. Journal of Paleontology, 1998. 72(2): p. 265-273.
9. Gillary, H.L., Electrical Potentials from the Regenerating Eye of Strombus. J Exp Biol, 1983. 107(1): p. 293-310.
10. Hara, T., et al., Rhodopsin and Retinochrome in the Retina of a Tetrabranchiate Cephalopod, Nautilus pompilius. Zoological Science, 2009. 12(2): p. 195-201.
11. Hughes, H.P.I., Structure and regeneration of the eyes of strombid gastropods. Cell Tissue Res, 1976. 171(2): p. 259-271.
12. Jacklet, J.W., Electrophysiological organization of the eye of Aplysia. J Gen Physiol, 1969. 53(1): p. 21-42.
13. Jan-Olof, S., Structure and optics of the eye of the hawk-wing conch, <I>Strombus raninus</I> (L.). Journal of Experimental Zoology, 1994. 268(3): p. 200-207.
14. Kandel, E.R., Small systems of neurons. Sci Am, 1979. 241(3): p. 66-76.
15. Katagiri, N., Cytoplasmic Characteristics of Three Different Rhabdomeric Photoreceptor Cells in a Marine Gastropod, Onchidium verruculatum. Journal of Electron Microscopy, 1984. 33(2): p. 142-150.
16. Land, M.F., Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J Physiol, 1965. 179(1): p. 138-53.
17. Land, M.F., Activity in the optic nerve of Pecten maximus in response to changes in light intensity, and to pattern and movement in the optical environment. J Exp Biol, 1966. 45(1): p. 83-99.
18. Land, M.F., The spatial resolution of the pinhole eyes of giant clams (Tridacna maxima). Proc Biol Sci, 2003. 270(1511): p. 185-8.
19. Latiolais, J.M., et al., A molecular phylogenetic analysis of strombid gastropod morphological diversity. Molecular Phylogenetics and Evolution, 2006. 41(2): p. 436-444.
20. Michael, F.L., Eyes with mirror optics. Journal of Optics A: Pure and Applied Optics, 2000. 2(6): p. R44.
21. Nilsson, D.-E., Eyes as Optical Alarm Systems in Fan Worms and Ark Clams. Philosophical Transactions: Biological Sciences, 1994. 346(1316): p. 195-212.
22. Serb, J. and D. Eernisse, Charting Evolution’s Trajectory: Using Molluscan Eye Diversity to Understand Parallel and Convergent Evolution. Evolution: Education and Outreach, 2008. 1(4): p. 439-447.
23. Seyer, J.O., D.E. Nilsson, and E. Warrant, Spatial vision in the prosobranch gastropod ampularia sp. J Exp Biol, 1998. 201(10): p. 1673-1679.
24. Shu, D.G., et al., Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature, 2003. 421(6922): p. 526-9.
25. Speiser, D.I. and S. Johnsen, Scallops visually respond to the size and speed of virtual particles. J Exp Biol, 2008. 211(13): p. 2066-2070.
26. Speiser, D.I. and S. Johnsen, Comparative Morphology of the Concave Mirror Eyes of Scallops (Pectinoidea)*. American Malacological Bulletin, 2008. 26(1-2): p. 27-33.
27. Van Roy, P., et al., Ordovician faunas of Burgess Shale type. Nature, 2010. 465(7295): p. 215-218.
28. Wilkens, L.A., THE VISUAL SYSTEM OF THE GIANT CLAM TRIDACNA: BEHAVIORAL ADAPTATIONS. Biol Bull, 1986. 170(3): p. 393-408.
29. Wilkens, L.A., Hyperpolarizing photoreceptors in the eyes of the giant clam Tridacna: physiological evidence for both spiking and nonspiking cell types. J Comp Physiol A, 1988. 163(1): p. 73-84.
30. Zieger, M.V. and V.B. Meyer-Rochow, Understanding the Cephalic Eyes of Pulmonate Gastropods: A Review*. American Malacological Bulletin, 2008. 26(1-2): p. 47-66.
31. Zieger, M.V., et al., Eyes and vision in Arion rufus and Deroceras agreste (Mollusca; Gastropoda; Pulmonata): What role does photoreception play in the orientation of these terrestrial slugs? Acta Zoologica, 2009. 90(2): p. 189-204.
Ch9
1. Anctil, M. and M.A. Ali, Letter: Giant ganglion cells in the retina of the hammerhead shark (Sphyrna lewini). Vision Res, 1974. 14(9): p. 903-4.
2. Anderson, P.S. and M.W. Westneat, Feeding mechanics and bite force modelling of the skull of Dunkleosteus terrelli, an ancient apex predator. Biol Lett, 2007. 3(1): p. 76-9.
3. Basden, A.M., et al., The most primitive osteichthyan braincase? Nature, 2000. 403(6766): p. 185-8.
4. Block, B.A. and F.G. Carey, Warm brain and eye temperatures in sharks. J Comp Physiol [B], 1985. 156(2): p. 229-36.
5. Bodznick, D., Elasmobranch vision: multimodal integration in the brain. J Exp Zool Suppl, 1990. 5: p. 108-16.
6. Bozzano, A. and S.P. Collin, Retinal Ganglion Cell Topography in Elasmobranchs. Brain, Behavior and Evolution, 2000. 55(4): p. 191-208.
7. Bromm, B., H. Hensel, and K. Nier, Response of the ampullae of Lorenzini to static combined electric and thermal stimuli inScyliorhinus canicula. Cellular and Molecular Life Sciences, 1975. 31(5): p. 615-618.
8. Bullock, T.H., Processing of ampullary input in the brain: comparison of sensitivity and evoked responses among elasmobranch and siluriform fishes. J Physiol (Paris), 1979. 75(4): p. 397-407.
9. Burrow, C.J., A.S. Jones, and G.C. Young, X-ray microtomography of 410 million-year-old optic capsules from placoderm fishes. Micron, 2005. 36(6): p. 551-7.
10. David, B., Elasmobranch vision: Multimodal integration in the brain. Journal of Experimental Zoology, 1990. 256(S5): p. 108-116.
11. Demian, D.C., et al., Predominance of genetic monogamy by females in a hammerhead shark, <i>Sphyrna tiburo</i>: implications for shark conservation. Molecular Ecology, 2004. 13(7): p. 1965-1974.
12. Donley, J.M., et al., Thermal dependence of contractile properties of the aerobic locomotor muscle in the leopard shark and shortfin mako shark. J Exp Biol, 2007. 210(7): p. 1194-1203.
13. Ebbesson, S.O. and D.L. Meyer, The visual system of the guitar fish (Rhinobatos productus). Cell Tissue Res, 1980. 206(2): p. 243-50.
14. Fernald, R.D., Aquatic adaptations in fish eyes, in Sensory Biology of Aquatic Animals. 1988, Springer-Verlag: New York. p. 435-466.
15. Goldman, J.N. and G.B. Benedek, The relationship between morphology and transparency in the nonswelling corneal stroma of the shark. Invest. Ophthalmol. Vis. Sci., 1967. 6(6): p. 574-600.
16. Hart, N.S., T.J. Lisney, and S.P. Collin, Visual communication in elasmobranchs, in Communication in Fishes, F. Ladich, et al., Editors. 2006, Science Publishers. p. 56.
17. Hart, N.S., et al., Multiple cone visual pigments and the potential for trichromatic colour vision in two species of elasmobranch. J Exp Biol, 2004. 207(Pt 26): p. 4587-94.
18. Hove, J.R. and S.A. Moss, Effect of MS-222 on response to light and rate of metabolism of the little skate Raja erinacea. Marine Biology, 1997. 128(4): p. 579-583.
19. Hueter, R.E., et al., Refractive state and accommodation in the eyes of free-swimming versus restrained juvenile lemon sharks (Negaprion brevirostris). Vision Research, 2001. 41(15): p. 1885-1889.
20. Joseph, T.E., Ocular morphology in antarctic notothenioid fishes. Journal of Morphology, 1988. 196(3): p. 283-306.
21. Kajiura, S.M. and K.N. Holland, Electroreception in juvenile scalloped hammerhead and sandbar sharks. J Exp Biol, 2002. 205(23): p. 3609-3621.
22. Knight, K., HAMMERHEADS’ WIDE HEADS GIVE IMPRESSIVE STEREO VIEW. J Exp Biol, 2009. 212(24): p. i-.
23. Ladich, F., Communication in fishes. 2006, Enfield, NH: Science Publishers.
24. Land, M.F., Image formation by a concave reflector in the eye of the scallop, Pecten maximus. J Physiol, 1965. 179(1): p. 138-53.
25. Lisney, T.J. and S.P. Collin, Relative Eye Size in Elasmobranchs. Brain, Behavior and Evolution, 2007. 69(4): p. 266-279.
26. Maisey, J.G. and M.E. Anderson, A Primitive Chondrichthyan Braincase from the Early Devonian of South Africa. Journal of Vertebrate Paleontology, 2001. 21(4): p. 702-713.
27. McComb, D.M., T.C. Tricas, and S.M. Kajiura, Enhanced visual fields in hammerhead sharks. J Exp Biol, 2009. 212(24): p. 4010-4018.
28. Miles, R.S., The Holonematidae (Placoderm Fishes), A Review Based on New Specimens of Holonema from the Upper Devonian of Western Australia. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1971. 263(849): p. 101-234.
29. Naka, K., et al., Dynamics of skate horizontal cells. J Gen Physiol, 1988. 92(6): p. 811-31.
30. Reid, D.G., A cladistic phylogeny of the genus Littorina (Gastropoda): implications for evolution of reproductive strategies and for classification. Hydrobiologia, 1990. 193(1): p. 1-19.
31. Sivak, J.G. and C.A. Luer, Optical development of the ocular lens of an elasmobranch, Raja elanteria. Vision Research, 1991. 31(3): p. 373-382.
32. Stephen M. Kajiura, J.B.F.A.P.S., Olfactory morphology of carcharhinid and sphyrnid sharks: Does the cephalofoil confer a sensory advantage? 2005. p. 253-263.
33. Stoddart, D.M., External nares and olfactory perception. Cellular and Molecular Life Sciences, 1979. 35(11): p. 1456-1457.
34. Wilga, C.D. and P.J. Motta, Durophagy in sharks: feeding mechanics of the hammerhead Sphyrna tiburo. J Exp Biol, 2000. 203(18): p. 2781-2796.
35. Young, G., Early Evolution of the Vertebrate Eye—Fossil Evidence. Evolution: Education and Outreach, 2008. 1(4): p. 427-438.
36. Young, G.C., Number and arrangement of extraocular muscles in primitive gnathostomes: evidence from extinct placoderm fishes. Biol Lett, 2008. 4(1): p. 110-4.
37. Zigman, S. and P.W. Gilbert, Lens colour in sharks. Experimental Eye Research, 1978. 26(2): p. 227-231.
Ch10
1. Albensi, B.C. and J.H. Powell, The differential optomotor response of the four-eyed fish Anableps anableps. Perception, 1998. 27(12): p. 1475-83.
2. Allwardt, B.A., et al., Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant. J Neurosci, 2001. 21(7): p. 2330-42.
3. Altringham, J.D. and B.A. Block, Why do tuna maintain elevated slow muscle temperatures? Power output of muscle isolated from endothermic and ectothermic fish. J Exp Biol, 1997. 200(Pt 20): p. 2617-27.
4. Avery, J.A. and J.K. Bowmaker, Visual pigments in the four-eyed fish, Anableps anableps. Nature, 1982. 298(5869): p. 62-63.
5. Baylor, E.R., Air and water vision of the Atlantic flying fish, Cypselurus heterurus. Nature, 1967. 214(5085): p. 307-9.
6. Block, B.A., Physiology and ecology of brain and eye heaters in billfish, in Planning the future of billfishes, R.H. Stroud, Editor. 1990, National Coalition Marine Conservation. p. 13.
7. Borwein, B. and M.J. Hollenberg, The photoreceptors of the “four-eyed” fish, Anableps anableps L. Journal of Morphology, 1973. 140(4): p. 405-441.
8. Bowmaker, J.K., The visual pigments of fish. Prog Retin Eye Res, 1995. 15(1): p. 1-31.
9. Bowmaker, J.K., A. Thorpe, and R.H. Douglas, Ultraviolet-sensitive cones in the goldfish. Vision Res, 1991. 31(3): p. 349-352.
10. Bowmaker, J.K. and H.-J. Wagner, Pineal organs of deep-sea fish: photopigments and structure. J Exp Biol, 2004. 207(14): p. 2379-2387.
11. Boyer, C.B., The rainbow from myth to mathematics. 1959, New York: T. Yoseloff. 376 p.
12. Bridges, C.D., Porphyropsin in retina of four-eyed fish, Anableps anableps. Nature, 1982. 300(5890): p. 384.
13. Burnside, B. and S. Basinger, Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3′,5′-adenosine monophosphate induction of dark-adaptive movement in vitro. Invest Ophthalmol Vis Sci, 1983. 24(1): p. 16-23.
14. Chang, C.H., C.C. Chiao, and H.Y. Yan, The structure and possible functions of the milkfish Chanos chanos adipose eyelid. J Fish Biol, 2009. 75(1): p. 87-99.
15. Chang, C.H., C.C. Chiao, and H.Y. Yan, Ontogenetic changes in color vision in the milkfish (Chanos chanos Forsskal, 1775). Zoolog Sci, 2009. 26(5): p. 349-55.
16. Chen, N., et al., Molecular cloning of a rhodopsin gene from salamander rods. Investigative Ophthalmology & Visual Science, 1996. 37(9): p. 1907-1913.
17. Collin, S.P., Specialisations of the teleost visual system: adaptive diversity from shallow-water to deep-sea. Acta Physiol Scand Suppl, 1997. 638: p. 5-24.
18. Collin, S.P. and H.B. Collin, Topographic analysis of the retinal ganglion cell layer and optic nerve in the sandlance Limnichthyes fasciatus (Creeiidae, Perciformes). J Comp Neurol, 1988. 278(2): p. 226-41.
19. Collin, S.P. and H.B. Collin, The foveal photoreceptor mosaic in the pipefish, Corythoichthyes paxtoni (Syngnathidae, Teleostei). Histol Histopathol, 1999. 14(2): p. 369-82.
20. Collin, S.P., R.V. Hoskins, and J.C. Partridge, Tubular eyes of deep-sea fishes: a comparative study of retinal topography. Brain Behav Evol, 1997. 50(6): p. 335-57.
21. Collin, S.P., R.V. Hoskins, and J.C. Partridge, Seven retinal specializations in the tubular eye of the deep-sea pearleye, Scopelarchus michaelsarsi: a case study in visual optimization. Brain Behav Evol, 1998. 51(6): p. 291-314.
22. Collin, S.P., D.J. Lloyd, and H.J. Wagner, Foveate vision in deep-sea teleosts: a comparison of primary visual and olfactory inputs. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1315-20.
23. Collin, S.P. and R.G. Northcutt, The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi). IV. Bilateral projections and the binocular visual field. Brain Behav Evol, 1995. 45(1): p. 34-53.
24. Colombini, I., et al., Foraging strategy of the mudskipper Periophthalmus sobrinus Eggert in a Kenyan mangrove. Journal of Experimental Marine Biology and Ecology, 1996. 197(2): p. 219-235.
25. Crescitelli, F., M. McFall-Ngai, and J. Horwitz, The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J Comp Physiol A, 1985. 157(3): p. 323-33.
26. Dill, L.M., Refraction and the spitting behavior of the archerfish (Toxotes chatareus). Behavioral Ecology and Sociobiology, 1977. 2(2): p. 169-184.
27. Douglas, R.H., C.W. Mullineaux, and J.C. Partridge, Long–wave sensitivity in deep–sea stomiid dragonfish with far–red bioluminescence: evidence for a dietary origin of the chlorophyll–derived retinal photosensitizer of Malacosteus niger. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 2000. 355(1401): p. 1269-1272.
28. Douglas, R.H., et al., Dragon fish see using chlorophyll. Nature, 1998. 393(6684): p. 423-424.
29. Douglas, R.H., et al., Enhanced retinal longwave sensitivity using a chlorophyll-derived photosensitiser in Malacosteus niger, a deep-sea dragon fish with far red bioluminescence. Vision Res, 1999. 39(17): p. 2817-2832.
30. Douglas, R.H., J.C. Partridge, and N.J. Marshall, The eyes of deep-sea fish. I: Lens pigmentation, tapeta and visual pigments. Prog Retin Eye Res, 1998. 17(4): p. 597-636.
31. Douglas, R.H. and A. Thorpe, Short-wave absorbing pigments in the ocular lenses of deep-sea teleosts. Journal of the Marine Biological Association of the United Kingdom, 1992. 72(01): p. 93-112.
32. Easter, S.S., Jr., Retinal growth in foveated teleosts: nasotemporal asymmetry keeps the fovea in temporal retina. J Neurosci, 1992. 12(6): p. 2381-92.
33. Eastman, J.T., Ocular morphology in antarctic notothenioid fishes. Journal of Morphology, 1988. 196(3): p. 283-306.
34. Elshoud, G.C.A. and P. Koomen, A biomechanical analysis of spitting in archer fishes (Pisces, Perciformes, Toxidae). Zoomorphology, 1985. 105(4): p. 240-252.
35. Evans, B.I. and R.D. Fernald, Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus). Vis Neurosci, 1993. 10(6): p. 1055-64.
36. Fang, M., et al., Retinal twin cones or retinal double cones in fish: misnomer or different morphological forms? Int J Neurosci, 2005. 115(7): p. 981-7.
37. Fernald, R.D., Retinal projections in the African cichlid fish, Haplochromis burtoni. J Comp Neurol, 1982. 206(4): p. 379-89.
38. Fernald, R.D., Cone mosaic in a teleost retina: No difference between light and dark adapted states. Cellular and Molecular Life Sciences, 1982. 38(11): p. 1337-1339.
39. Fernald, R.D. and S.E. Wright, Maintenance of optical quality during crystalline lens growth. Nature, 1983. 301(5901): p. 618-20.
40. Ferry-Graham, L.A., P.C. Wainwright, and D.R. Bellwood, Prey capture in long-jawed butterflyfishes (Chaetodontidae): the functional basis of novel feeding habits. J Exp Mar Bio Ecol, 2001. 256(2): p. 167-184.
41. Ferry-Graham, L.A., et al., Evolution and mechanics of long jaws in butterflyfishes (family Chaetodontidae). J Morphol, 2001. 248(2): p. 120-43.
42. Forsell, J., B. Holmqvist, and P. Ekstrom, Molecular identification and developmental expression of UV and green opsin mRNAs in the pineal organ of the Atlantic halibut. Brain Res Dev Brain Res, 2002. 136(1): p. 51-62.
43. Franz-Odendaal, T.A. and B.K. Hall, Skeletal elements within teleost eyes and a discussion of their homology. J Morphol, 2006. 267(11): p. 1326-37.
44. Friedman, M., The evolutionary origin of flatfish asymmetry. Nature, 2008. 454(7201): p. 209-212.
45. Fritsches, K.A., R.W. Brill, and E.J. Warrant, Warm eyes provide superior vision in swordfishes. Curr Biol, 2005. 15(1): p. 55-8.
46. Fritsches, K.A. and J. Marshall, A new category of eye movements in a small fish. Curr Biol, 1999. 9(8): p. R272-3.
47. Fritsches, K.A., N.J. Marshall, and E.J. Warrant, Retinal specializations in the blue marlin: eyes designed for sensitivity to low light levels. 2003.
48. Fritsches, K.A., et al., Colour vision in billfish. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1253-6.
49. Gonzalez, R.M., et al., Membrane formations in the pineal cells of the teleost Gambusia affinis. J Pineal Res, 1989. 7(4): p. 325-32.
50. Graf, W. and R. Baker, The vestibuloocular reflex of the adult flatfish. I. Oculomotor organization. J Neurophysiol, 1985. 54(4): p. 887-99.
51. Graf, W. and R. Baker, The vestibuloocular reflex of the adult flatfish. II. Vestibulooculomotor connectivity. J Neurophysiol, 1985. 54(4): p. 900-16.
52. Gruber, S.H., E.R. Loew, and W.N. McFarland, Rod and cone pigments of the Atlantic guitarfish, Rhinobatos lentiginosus Garman. J Exp Zool Suppl, 1990. 5: p. 85-7.
53. Hawryshyn, C.W., Ultraviolet polarization vision in fishes: possible mechanisms for coding e-vector. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1187-90.
54. Hunt, D.M., et al., The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol, 2001. 204(Pt 19): p. 3333-44.
55. Inoue, J.G., et al., Mitogenomic evidence for the monophyly of elopomorph fishes (Teleostei) and the evolutionary origin of the leptocephalus larva. Molecular Phylogenetics and Evolution, 2004. 32(1): p. 274-286.
56. Janvier, P., Palaeontology: Squint of the fossil flatfish. Nature, 2008. 454(7201): p. 169-170.
57. John, C.M., Low temperature increases gain in the fish oculomotor system. Journal of Neurobiology, 1984. 15(4): p. 295-298.
58. Joseph, T.E., Morphological specialization in Antarctic fishes. Antarctic journal of the United States, 1981. 16(5): p. 146-147.
59. Joseph, T.E., Ocular morphology in antarctic notothenioid fishes. Journal of Morphology, 1988. 196(3): p. 283-306.
60. Justin Marshall, N., Communication and camouflage with the same ‘bright’ colours in reef fishes. 2000. p. 1243-1248.
61. KAMONPAN AWAIWANONT, W.G., MUNEFUMI SAMESHIMA,SEIICHI HAYASHI and GUNZO KAWAMURA, Grouped, stacked rods and tapeta lucida in the retina of Japanese anchovy Engraulis japonicus. Fisheries science, 2001. 67(5): p. 804-810.
62. Kanungo, J., S.K. Swamynathan, and J. Piatigorsky, Abundant corneal gelsolin in Zebrafish and the [`]four-eyed’ fish, Anableps anableps: possible analogy with multifunctional lens crystallins. Experimental Eye Research, 2004. 79(6): p. 949-956.
63. Kapoor, B.G. and T.J. Hara, Sensory biology of jawed fishes : new insights. 2001, Enfield, (NH): Science Publishers. xiii, 387 p.
64. Kröger, R., K. Fritsches, and E. Warrant, Lens optical properties in the eyes of large marine predatory teleosts. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009. 195(2): p. 175-182.
65. Land, M.F., Visual optics: The sandlance eye breaks all the rules. Curr Biol, 1999. 9(8): p. R286-8.
66. Land, M.F., On the functions of double eyes in midwater animals. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1147-50.
67. Larmuseau, M.H.D., et al., To see in different seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus). Molecular Ecology, 2009. 18(20): p. 4227-4239.
68. Locket, N.A., DEEP-SEA FISH RETINAS. British Medical Bulletin, 1970. 26(2): p. 107-111.
69. Locket, N.A., On the lens pad of Benthalbella infans, a scopelarchid deep-sea teleost. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1167-9.
70. Loew, E.R. and J.N. Lythgoe, The ecology of cone pigments in teleost fishes. Vision Res, 1978. 18(6): p. 715-22.
71. Lythgoe, J.N., The structure and function of iridescent corneas in teleost fishes. Proc R Soc Lond B Biol Sci, 1975. 188(1093): p. 437-57.
72. McCosker, J.E., et al., Cottoclinus canops, a new genus and species of Blenny (Perciformes: Labrisomidae) from the Galápagos Islands. Proceedings of the California Academy of Sciences, v. 54, no. 8. 2003, San Francisco, Calif.: California Academy of Sciences.
73. McFall-Ngai, M., et al., Biochemical Characteristics of the Pigmentation of Mesopelagic Fish Lenses. Biol Bull, 1988. 175(3): p. 397-402.
74. McFall-Ngai, M.J. and J. Horwitz, A comparative study of the thermal stability of the vertebrate eye lens: Antarctic ice fish to the desert iguana. Experimental Eye Research, 1990. 50(6): p. 703-709.
75. McFarland, W.N. and E.R. Loew, Ultraviolet visual pigments in marine fishes of the family pomacentridae. Vision Res, 1994. 34(11): p. 1393-6.
76. Meyer, D.L., C.R. Malz, and A.G. Jadhao, Nervus terminalis projection to the retina in the ‘four-eyed’ fish, Anableps anableps. Neurosci Lett, 1996. 213(2): p. 87-90.
77. Meyer-Rochow, V.B. and M.A. Klyne, Retinal organization of the eyes of three nototheniid fishes from the Ross Sea (Antarctica). Gegenbaurs Morphol Jahrb, 1982. 128(5): p. 762-77.
78. Meyer-Rochow, V.B., Y. Morita, and S. Tamotsu, Immunocytochemical observations on pineal organ and retina of the Antarctic teleosts Pagothenia borchgrevinki and Trematomus bernacchii. J Neurocytol, 1999. 28(2): p. 125-30.
79. Miller, R.R., Ecology, Habits and Relationships of the Middle American Cuatro Ojos, Anableps dowi (Pisces: Anablepidae). Copeia, 1979. 1979(1): p. 82-91.
80. Montgomery, J.C. and J.A. Macdonald, Oculomotor function at low temperature: antarctic versus temperate fish. J Exp Biol, 1985. 117(1): p. 181-191.
81. Montgomery, J.C. and A.R. McVean, Brain function in antarctic fish: Activity of central vestibular neurons in relation to head rotation and eye movement. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987. 160(2): p. 289-293.
82. Munk, O., Ocular anatomy of some deep-sea teleosts. The Carlsberg foundation’s oceanographical expedition round the world 1928-30 and previous “Dana”-expeditions Dana-report. 1966, Copenhagen,: Høst. 63 p.
83. Nieder, J., Amphibious behaviour and feeding ecology of the four-eyed blenny (<i>Dialommus fuscus</i>, Labrisomidae) in the intertidal zone of the island of Santa Cruz (Galapagos, Ecuador). Journal of Fish Biology, 2001. 58(3): p. 755-767.
84. Nilsson, D.E. and S. Pelger, A pessimistic estimate of the time required for an eye to evolve. Proc Biol Sci, 1994. 256(1345): p. 53-8.
85. Northcutt, R.G. and W.E. Bemis, Cranial nerves of the coelacanth, Latimeria chalumnae [Osteichthyes: Sarcopterygii: Actinistia], and comparisons with other craniata. Brain Behav Evol, 1993. 42 Suppl 1: p. 1-76.
86. Owens, G.L., et al., A fish eye out of water: ten visual opsins in the four-eyed fish, Anableps anableps. PLoS One, 2009. 4(6): p. e5970.
87. Pankhurst, N.W. and J.C. Montgomery, Ontogeny of vision in the Antarctic fish Pagothenia borchgrevinki (Nototheniidae). Polar Biology, 1990. 10(6): p. 419-422.
88. Partridge, J.C., S.N. Archer, and J. Vanoostrum, Single and multiple visual pigments in deep-sea fishes. Journal of the Marine Biological Association of the United Kingdom, 1992. 72(01): p. 113-130.
89. Pearcy, W.G., S.L. Meyer, and O. Munk, A ‘four-eyed’ fish from the deep-sea: Bathylychnops exilis Cohen, 1958. Nature, 1965. 207(5003): p. 1260-2.
90. Pettigrew, J.D. and S.P. Collin, Terrestrial optics in an aquatic eye: The sandlance, <i>Limnichthytes fasciatus</i> (Creediidae, Teleostei). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995. 177(4): p. 397-408.
91. Pettigrew, J.D., S.P. Collin, and M. Ott, Convergence of specialised behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). 1999. 9(8): p. 421-424.
92. Reis, E.M.R., C.W. Slayman, and S. Verjovski-Almeida, Heterologous expression of sarcoplasmic reticulum Ca<sup>2+</sup>-ATPase. Bioscience Reports, 1996. 16(2): p. 107-113.
93. Robison, B.H. and K.R. Reisenbichler, Macropinna microstoma and the Paradox of Its Tubular Eyes. Copeia, 2008. 2008(4): p. 780-784.
94. Rossetto, E.S., H. Dolder, and I. Sazima, Double cone mosaic pattern in the retina of larval and adult piranha,<i>Serrasalmus spilopleura</i>. Cellular and Molecular Life Sciences, 1992. 48(6): p. 597-599.
95. Saidel, W.M., Coherence in nervous system design: the visual system of Pantodon buchholzi. 2000. p. 1177-1181.
96. Saidel, W.M. and A. B. Butler, An atypical diencephalic nucleus in actinopterygian fishes: visual connections and sporadic phylogenetic distribution. Neuroscience Letters, 1997. 229(1): p. 13-16.
97. Saidel, W.M. and A.B. Butler, Visual connections of the atypical diencephalic nucleus rostrolateralis in Pantodon buchholzi (Teleostei, Osteoglossomorpha). Cell Tissue Res, 1997. 287(1): p. 91-9.
98. Saidel, W.M. and R.S. Fabiane, Optomotor response of Anableps anableps depends on the field of view. Vision Res, 1998. 38(13): p. 2001-6.
99. Schwab, I.R., et al., Evolutionary attempts at 4 eyes in vertebrates. Trans Am Ophthalmol Soc, 2001. 99: p. 145-56; discussion 156-7.
100. Schwab, I.R., et al., Evolution of the tapetum. Trans Am Ophthalmol Soc, 2002. 100: p. 187-99; discussion 199-200.
101. Schwassmann, H.O. and L. Kruger, Experimental analysis of the visual system of the four-eyed fish anableps microlepis. Vision Research, 1965. 5(6-7): p. 269-281, IN1.
102. Seehausen, O., et al., Speciation through sensory drive in cichlid fish. Nature, 2008. 455(7213): p. 620-626.
103. Siebeck, U.E., et al., Occlusable corneas in toadfishes: light transmission, movement and ultrastruture of pigment during light- and dark-adaptation. Journal of Experimental Biology, 2003. 206(13): p. 2177-2190.
104. Sivak, J.G., Optics of the eye of the “four-eyed fish” (Anableps anableps). Vision Res, 1976. 16(5): p. 531-4.
105. Sivak, J.G., The functional significance of the aphakic space of the fish eye. Can J Zool, 1978. 56(3): p. 513-6.
106. Stein, D.L. and C.E. Bond, Observations on the morphology, ecology, and behaviour of <i>Bathylychnops exilis</i> Cohen. Journal of Fish Biology, 1985. 27(3): p. 215-228.
107. Stewart, K.W., Observations on the morphology and optical properties of the adipose eyelid of fishes. Journal of the Fisheries Research Board of Canada, 1962. 19(6): p. 1161-1162.
108. Swamynathan, S.K., et al., Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB J, 2003. 17(14): p. 1996-2005.
109. Szabo, T., et al., Oculomotor system of the weakly electric fish <I>Gnathonemus petersii</I>. J Comp Neurol, 1987. 264(4): p. 480-493.
110. Temple, S., et al., A spitting image: specializations in archerfish eyes for vision at the interface between air and water. Proceedings of the Royal Society B: Biological Sciences, 2010. 277(1694): p. 2607-2615.
111. Thorpe, A., R.H. Douglas, and R.J. Truscott, Spectral transmission and short-wave absorbing pigments in the fish lens–I. Phylogenetic distribution and identity. Vision Res, 1993. 33(3): p. 289-300.
112. Timmermans, P.J. and P.M. Souren, Prey catching in archer fish: the role of posture and morphology in aiming behavior. Physiol Behav, 2004. 81(1): p. 101-10.
113. Timmermans, P.J. and J.M. Vossen, Prey catching in the archer fish: does the fish use a learned correction for refraction? Behav Processes, 2000. 52(1): p. 21-34.
114. Timmermans, P.J.A., CATCHING IN THE ARCHER FISH: MARKSMANSHIP, ENDURANCE OF SQUIRTING AT AN AERIAL TARGET. Netherlands Journal of Zoology, 2000. 50(4): p. 411-423.
115. Timmermans, P.J.A., Prey catching in the archer fish: angles and probability of hitting an aerial target. Behavioural Processes, 2001. 55(2): p. 93-105.
116. Ubels, J.L. and H.F. Edelhauser, Healing of corneal epithelial wounds in marine and freshwater fish. Current Eye Research, 1982. 2(9): p. 613 – 620.
117. Wagner, H.J., et al., A novel vertebrate eye using both refractive and reflective optics. Curr Biol, 2009. 19(2): p. 108-14.
118. Wagner, H.J., et al., The eyes of deep-sea fish. II. Functional morphology of the retina. Prog Retin Eye Res, 1998. 17(4): p. 637-85.
119. Wagner, H.-J., et al., A Novel Vertebrate Eye Using Both Refractive and Reflective Optics. Current biology : CB, 2009. 19(2): p. 108-114.
120. Warrant, E., The eyes of deep-sea fishes and the changing nature of visual scenes with depth. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1155-9.
121. Warrant, E., Vision in the dimmest habitats on earth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2004. 190(10): p. 765-89.
122. Warrant, E.J. and N.A. Locket, Vision in the deep sea. Biol Rev Camb Philos Soc, 2004. 79(3): p. 671-712.
123. Waxman, H.M. and J.D. McCleave, Auto-shaping in the archer fish (Toxotes chatareus). Behavioral Biology, 1978. 22(4): p. 541-544.
124. Werneburg, I. and S.T. Hertwig, Head morphology of the ricefish, Oryzias latipes (Teleostei: Beloniformes). J Morphol, 2009. 270(9): p. 1095-106.
125. Yokoyama, S., et al., Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci U S A, 1999. 96(11): p. 6279-84.
Ch11
1. New early griffenfly, Sinomeganeura huangheensis from the Late Carboniferous of northern China (Meganisoptera: Meganeuridae). Insect Systematics & Evolution, 2008. 39: p. 223-229.
2. Arendt, D., et al., Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science, 2004. 306(5697): p. 869-71.
3. Berry, R.P., G. Stange, and E.J. Warrant, Form vision in the insect dorsal ocelli: an anatomical and optical analysis of the dragonfly median ocellus. Vision Res, 2007. 47(10): p. 1394-409.
4. Briscoe, A.D. and L. Chittka, The evolution of color vision in insects. Annu Rev Entomol, 2001. 46: p. 471-510.
5. Burrow, C.J., A.S. Jones, and G.C. Young, X-ray microtomography of 410 million-year-old optic capsules from placoderm fishes. Micron, 2005. 36(6): p. 551-7.
6. Chappell, R.L. and J.E. Dowling, Neural organization of the median ocellus of the dragonfly. I. Intracellular electrical activity. J Gen Physiol, 1972. 60(2): p. 121-47.
7. Dowling, J.E. and R.L. Chappell, Neural organization of the median ocellus of the dragonfly. II. Synaptic structure. J Gen Physiol, 1972. 60(2): p. 148-65.
8. Engel, M.S. and D.A. Grimaldi, New light shed on the oldest insect. Nature, 2004. 427(6975): p. 627-30.
9. Friedrich, M., Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus, and compound eye specification in Drosophila. Arthropod Struct Dev, 2006. 35(4): p. 357-78.
10. Harzsch, S., R.R. Melzer, and C.H.G. Müller, Mechanisms of eye development and evolution of the arthropod visual system: The lateral eyes of myriapoda are not modified insect ommatidia. Organisms Diversity & Evolution, 2007. 7(1): p. 20-32.
11. Horridge, G.A., L. Marcelja, and R. Jahnke, Light Guides in the Dorsal Eye of the Male Mayfly. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1982. 216(1202): p. 25-51.
12. Kondo, H., Efferent system of the lateral ocellus in the dragonfly: Its relationships with the ocellar afferent units, the compound eyes, and the wing sensory system. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1978. 125(4): p. 341-349.
13. Labhart, T. and D.E. Nilsson, The dorsal eye of the dragonfly <i>Sympetrum</i>: specializations for prey detection against the blue sky. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995. 176(4): p. 437-453.
14. Lamsdell, J.C. and S.J. Braddy, Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biol Lett, 2010. 6(2): p. 265-9.
15. Long, J.A., et al., An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature, 2006. 444(7116): p. 199-202.
16. Machida, R., External features of embryonic development of a jumping bristletail, Pedetontus unimaculatus Machida (Insecta, Thysanura, Machilidae). J Morphol, 1981. 168(3): p. 339-355.
17. Mayhew, P.J., Shifts in hexapod diversification and what Haldane could have said. Proc Biol Sci, 2002. 269(1494): p. 969-74.
18. Meyer, E.P. and T. Labhart, Morphological specializations of dorsal rim ommatidia in the compound eye of dragonflies and damselfies (Odonata). Cell Tissue Res, 1993. 272(1): p. 17-22.
19. Meyer-Rochow, V.B. and A.R. Liddle, Structure and Function of the Eyes of Two Species of Opilionid from New Zealand Glow-worm Caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proceedings of the Royal Society of London. Series B, Biological Sciences, 1988. 233(1272): p. 293-319.
20. Mikolajewski, D.J. and F. Johansson, Morphological and behavioral defenses in dragonfly larvae: trait compensation and cospecialization. Behavioral Ecology, 2004. 15(4): p. 614-620.
21. Nilsson, D.E. and A. Kelber, A functional analysis of compound eye evolution. Arthropod Struct Dev, 2007. 36(4): p. 373-85.
22. Paulus, H.F., Phylogeny of the Myriapoda – Crustacea – Insecta: a new attempt using photoreceptor structure*. 2000. p. 189-208.
23. Perkins, S., Changes in the air: Variations in atmospheric oxygen have affected evolution in big ways. Science News, 2005. 168(25): p. 395-396.
24. Rashed, A., et al., Prey selection by dragonflies in relation to prey size and wasp-like colours and patterns. Animal Behaviour, 2005. 70(5): p. 1195-1202.
25. Seki, T., S. Fujishita, and S. Obana, Composition and distribution of retinal and 3-hydroxyretinal in the compound eye of the dragonfly. Exp Biol, 1989. 48(2): p. 65-75.
26. Sherk, T.E., Development of the compound eyes of dragonflies (odonata). I. Larval compound eyes. Journal of Experimental Zoology, 1977. 201(3): p. 391-416.
27. Sherk, T.E., Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zool, 1978. 203(1): p. 61-80.
28. Sherk, T.E., Development of the compound eyes of dragonflies (Odonata). II. Development of the larval compound eyes. J Exp Zool, 1978. 203(1): p. 47-60.
29. Spies, T., Structure and phylogenetic interpretation of diplopod eyes (Diplopoda). Zoomorphology, 1981. 98(3): p. 241-260.
Ch12
1. Blest, A.D. and M.F. Land, The Physiological Optics of Dinopis subrufus L. Koch: A Fish-Lens in a Spider. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1977. 196(1123): p. 197-222.
2. Blest, A.D., D.S. Williams, and L. Kao, The posterior median eyes of the dinopid spider Menneus. Cell and Tissue Research, 1980. 211(3): p. 391-403.
3. Clark, D.L. and C.L. Morjan, Attracting female attention: the evolution of dimorphic courtship displays in the jumping spider Maevia inclemens (Araneae: Salticidae). Proceedings of the Royal Society of London. Series B: Biological Sciences, 2001. 268(1484): p. 2461-2465.
4. Dacke, M., et al., Built-in polarizers form part of a compass organ in spiders. Nature, 1999. 401(6752): p. 470-473.
5. De Voe, R.D., Ultraviolet and green receptors in principal eyes of jumping spiders. J Gen Physiol, 1975. 66(2): p. 193-207.
6. Dunlop, J.A., et al., Palaeontology: Preserved organs of Devonian harvestmen. Nature, 2003. 425(6961): p. 916-916.
7. Getty, R.M. and F.A. Coyle, Observations on Prey Capture and Anti-Predator Behaviors of Ogre-Faced Spiders (Deinopis) in Southern Costa Rica (Araneae, Deinopidae). Journal of Arachnology, 1996. 24(2): p. 93-100.
8. Harland, D.P. and R.R. Jackson, Cues by which Portia fimbriata, an araneophagic jumping spider, distinguishes jumping-spider prey from other prey. J Exp Biol, 2000. 203(22): p. 3485-3494.
9. Harland, D.P. and R.R. Jackson, Influence of cues from the anterior medial eyes of virtual prey on Portia fimbriata, an araneophagic jumping spider. J Exp Biol, 2002. 205(13): p. 1861-1868.
10. Hedin, M.C. and W.P. Maddison, A Combined Molecular Approach to Phylogeny of the Jumping Spider Subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 2001. 18(3): p. 386-403.
11. Jackson, R.R. and D. Li, One-encounter search-image formation by araneophagic spiders. Animal Cognition, 2004. 7(4): p. 247-254.
12. Jackson, R.R. and S.D. Pollard, Predatory Behavior of Jumping Spiders. Annual Review of Entomology, 1996. 41(1): p. 287-308.
13. Jackson, R.R., S.D. Pollard, and A.M. Cerveira, Opportunistic use of cognitive smokescreens by araneophagic jumping spiders. Anim Cogn, 2002. 5(3): p. 147-57.
14. Jackson, R.R., et al., Interpopulation variation in the risk-related decisions of Portia labiata, an araneophagic jumping spider (Araneae, Salticidae), during predatory sequences with spitting spiders. Anim Cogn, 2002. 5(4): p. 215-23.
15. Koyanagi, M., et al., Molecular evolution of arthropod color vision deduced from multiple opsin genes of jumping spiders. J Mol Evol, 2008. 66(2): p. 130-7.
16. Land, M.F., Movements of the Retinae of Jumping Spiders (Salticidae: Dendryphantinae) in Response to Visual Stimuli. J Exp Biol, 1969. 51(2): p. 471-493.
17. Land, M.F., Structure of the Retinae of the Principal Eyes of Jumping Spiders (Salticidae: Dendryphantinae) in Relation to Visual Optics. J Exp Biol, 1969. 51(2): p. 443-470.
18. Land, M.F. and F.G. Barth, THE QUALITY OF VISION IN THE CTENID SPIDER CUPIENNIUS SALEI. 1992. p. 227-242.
19. Meyer-Rochow, V.B. and A.R. Liddle, Structure and Function of the Eyes of Two Species of Opilionid from New Zealand Glow-worm Caves (Megalopsalis tumida: Palpatores, and Hendea myersi cavernicola: Laniatores). Proceedings of the Royal Society of London. Series B, Biological Sciences, 1988. 233(1272): p. 293-319.
20. Michael, D.O., The neural organization of the first optic ganglion of the principal eyes of jumping spiders (Salticidae). The Journal of Comparative Neurology, 1977. 174(1): p. 95-117.
21. Nakamura, T. and S. Yamashita, Learning and discrimination of colored papers in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000. 186(9): p. 897-901.
22. Ortega-Escobar, J.n., EVIDENCE THAT THE WOLF-SPIDER LYCOSA TARENTULA (ARANEAE, LYCOSIDAE) NEEDS VISUAL INPUT FOR PATH INTEGRATION. 2002. p. 481-486.
23. Peaslee, A.G. and G. Wilson, Spectral sensitivity in jumping spiders (Araneae, Salticidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1989. 164(3): p. 359-363.
24. Prete, F.R., Complex worlds from simpler nervous systems. 2004, Cambridge, MA ; London: MIT Press. xx, 436 p., 16 p. of plates.
25. Rovner, J.S., Conspecific Interactions in the Lycosid Spider Rabidosa rabida: The Roles of Different Senses. Journal of Arachnology, 1996. 24(1): p. 16-23.
26. Schmitz, A., Metabolic rates during rest and activity in differently tracheated spiders (Arachnida, Araneae): Pardosa lugubris (Lycosidae) and Marpissa muscosa (Salticidae). Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2004. 174(7): p. 519-526.
27. Schmitz, A., Spiders on a treadmill: influence of running activity on metabolic rates in Pardosa lugubris (Araneae, Lycosidae) and Marpissa muscosa (Araneae, Salticidae). J Exp Biol, 2005. 208(7): p. 1401-1411.
28. Strausfeld, N.J., P. Weltzien, and F.G. Barth, Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei. J Comp Neurol, 1993. 328(1): p. 63-75.
29. Williams, D.S. and P. MeIntyre, The principal eyes of a jumping spider have a telephoto component. Nature, 1980. 288(5791): p. 578-580.
30. Yamashita, S. and H. Tateda, Hypersensitivity in the anterior median eye of a jumping spider. J Exp Biol, 1976. 65(3): p. 507-516.
31. Yin, C.-M., C.E. Griswold, and H.-M. Yan, A NEW OGRE-FACED SPIDER (DEINOPIS) FROM THE GAOLIGONG MOUNTAINS, YUNNAN, CHINA (ARANEAE, DEINOPIDAE). Journal of Arachnology, 2009. 30(3): p. 610-612.
Ch13
1. Ahlberg, P.E. and J.A. Clack, Palaeontology: A firm step from water to land. Nature, 2006. 440(7085): p. 747-749.
2. Ahlberg, P.E. and Z. Johanson, Osteolepiforms and the ancestry of tetrapods. Nature, 1998. 395(6704): p. 792-794.
3. Bailes, H.J., et al., Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). J Comp Neurol, 2006. 494(3): p. 381-97.
4. Bailes, H.J., A.E. Trezise, and S.P. Collin, The number, morphology, and distribution of retinal ganglion cells and optic axons in the Australian lungfish Neoceratodus forsteri (Krefft 1870). Vis Neurosci, 2006. 23(2): p. 257-73.
5. Brazeau, M.D. and P.E. Ahlberg, Tetrapod-like middle ear architecture in a Devonian fish. Nature, 2006. 439(7074): p. 318-321.
6. Brooks, S.P.J., et al., Temperature Regulation of Glucose Metabolism in Red Blood Cells of the Freeze-Tolerant Wood Frog. Cryobiology, 1999. 39(2): p. 150-157.
7. Chen, N., et al., Molecular cloning of a rhodopsin gene from salamander rods. Invest Ophthalmol Vis Sci, 1996. 37(9): p. 1907-13.
8. Clack, J.A., Devonian climate change, breathing, and the origin of the tetrapod stem group. Integrative and Comparative Biology. 47(4): p. 13.
9. Clack, J.A., A new Early Carboniferous tetrapod with a melange of crown-group characters. Nature, 1998. 394(6688): p. 66-69.
10. Conlon, J.M., et al., Freeze tolerance in the wood frog Rana sylvatica is associated with unusual structural features in insulin but not in glucagon. J Mol Endocrinol, 1998. 21(2): p. 153-159.
11. Costanzo, J.P., R.E. Lee, and P.H. Lortz, Glucose concentration regulates freeze tolerance in the wood frog Rana sylvatica. J Exp Biol, 1993. 181(1): p. 245-255.
12. Costanzo, J.P., R.E. Lee, Jr., and P.H. Lortz, Physiological responses of freeze-tolerant and -intolerant frogs: clues to evolution of anuran freeze tolerance. Am J Physiol Regul Integr Comp Physiol, 1993. 265(4): p. R721-725.
13. Costanzo, J.P., R.E. Lee, Jr., and M.F. Wright, Glucose loading prevents freezing injury in rapidly cooled wood frogs. Am J Physiol Regul Integr Comp Physiol, 1991. 261(6): p. R1549-1553.
14. Daeschler, E.B., N.H. Shubin, and F.A. Jenkins, Jr., A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature, 2006. 440(7085): p. 757-63.
15. Fanny, M. and E.H. Christine, Control of retinal growth and axon divergence at the chiasm: lessons from <I>Xenopus</I>. BioEssays, 2001. 23(4): p. 319-326.
16. Fritzsch, B., The evolution of metamorphosis in amphibians. J Neurobiol, 1990. 21(7): p. 1011-21.
17. Gao, K.Q. and N.H. Shubin, Late Jurassic salamanders from northern China. Nature, 2001. 410(6828): p. 574-7.
18. Hedges, S.B., Biogeography: the coelacanth of frogs. Nature, 2003. 425(6959): p. 669-70.
19. Hillis, D.M. and T.P. Wilcox, Phylogeny of the New World true frogs (Rana). Mol Phylogenet Evol, 2005. 34(2): p. 299-314.
20. Hisatomi, O., et al., Primary structure of a visual pigment in bullfrog green rods. FEBS Lett, 1999. 447(1): p. 44-8.
21. Isayama, T., et al., An accessory chromophore in red vision. Nature, 2006. 443(7112): p. 649-649.
22. Jack, R.L., Jr., P.C. Jon, and E.L. Richard, Jr., Freeze duration influences postfreeze survival in the frog <I>Rana sylvatica</I>. The Journal of Experimental Zoology, 1998. 280(2): p. 197-201.
23. Janvier, P., Wandering nostrils. Nature, 2004. 432(7013): p. 23-4.
24. Joanisse, D.R. and K.B. Storey, Oxidative damage and antioxidants in Rana sylvatica, the freeze-tolerant wood frog. Am J Physiol Regul Integr Comp Physiol, 1996. 271(3): p. R545-553.
25. Kraig, A., EXTRAOCULAR PHOTORECEPTION IN AMPHIBIANS. Photochemistry and Photobiology, 1976. 23(4): p. 275-298.
26. Lande, M.A. and J.A. Zadunaisky, The Structure and Membrane Properties of the Frog Nictitans. Invest. Ophthalmol. Vis. Sci., 1970. 9(7): p. 477-491.
27. Lee, M.R., et al., Isolation of ice-nucleating active bacteria from the freeze-tolerant frog, Rana sylvatica. Cryobiology, 1995. 32(4): p. 358-65.
28. Lettvin, J.Y., et al., What the Frog’s Eye Tells the Frog’s Brain. Proceedings of the IRE, 1959. 47(11): p. 1940-1951.
29. Levine, R.P., J.A. Monroy, and E.L. Brainerd, Contribution of eye retraction to swallowing performance in the northern leopard frog, Rana pipiens. J Exp Biol, 2004. 207(Pt 8): p. 1361-8.
30. Long, J.A., et al., An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature, 2006. 444(7116): p. 199-202.
31. Mann, F. and C.E. Holt, Control of retinal growth and axon divergence at the chiasm: lessons from Xenopus. BioEssays, 2001. 23(4): p. 319-26.
32. McClanahan, L.L., R. Ruibal, and V.H. Shoemaker, Frogs and toads in deserts. Sci Am, 1994. 270(3): p. 82-8.
33. McNally, J.D., C.M. Sturgeon, and K.B. Storey, Freeze-induced expression of a novel gene, fr47, in the liver of the freeze-tolerant wood frog, Rana sylvatica. Biochimica et Biophysica Acta (BBA) – Gene Structure and Expression, 2003. 1625(2): p. 183-191.
34. McNally, J.D., et al., Identification and characterization of a novel freezing inducible gene, li16, in the wood frog Rana sylvatica. FASEB J., 2002. 16(8): p. 902-904.
35. Montgomery, N.M., C. Tyler, and K.V. Fite, Organization of retinal axons within the optic nerve, optic chiasm, and the innervation of multiple central nervous system targets Rana pipiens. J Comp Neurol, 1998. 402(2): p. 222-37.
36. Nakagawa, S., et al., Ephrin-B Regulates the Ipsilateral Routing of Retinal Axons at the Optic Chiasm. Neuron, 2000. 25(3): p. 599-610.
37. O’Reilly, J.C., R.A. Nussbaum, and D. Boone, Vertebrate with protrusible eyes. Nature, 1996. 382(6586): p. 33-33.
38. Payne, A.P., The harderian gland: a tercentennial review. J Anat, 1994. 185 ( Pt 1): p. 1-49.
39. Phillips, J.B., et al., The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol, 2001. 204(14): p. 2543-2552.
40. Reiss, J.O., The phylogeny of amphibian metamorphosis. Zoology, 2002. 105(2): p. 85-96.
41. Rubinsky, B., et al., 1H magnetic resonance imaging of freezing and thawing in freeze-tolerant frogs. Am J Physiol Regul Integr Comp Physiol, 1994. 266(6): p. R1771-1777.
42. Schad, W., Heterochronical patterns of evolution in the transitional stages of vertebrate classes. Acta Biotheoretica, 1993. 41(4): p. 383-389.
43. Schoch, R.R. and R.L. Carroll, Ontogenetic evidence for the Paleozoic ancestry of salamanders. Evol Dev, 2003. 5(3): p. 314-24.
44. Schwab, I.R., An icy stare. British Journal of Ophthalmology, 2005. 89(10): p. 1236.
45. Schwab, I.R., S. Collin, and H. Bailes, Bringing the eyes along. British Journal of Ophthalmology, 2006. 90(7): p. 818.
46. Schwab, I.R. and W. Saidel, Look before you leap. British Journal of Ophthalmology, 2003. 87(4): p. 391.
47. Selden, P.A., J.A. Corronca, and M.A. Hunicken, The true identity of the supposed giant fossil spider Megarachne. Biol Lett, 2005. 1(1): p. 44-8.
48. Siddiqi, A., et al., Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol, 2004. 207(Pt 14): p. 2471-85.
49. Sivak, J.G. and M.R. Warburg, Changes in optical properties of the eye during metamorphosis of an anuran,<i>Pelobates syriacus</i>. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983. 150(3): p. 329-332.
50. Skelly, D.K., Microgeographic Countergradient Variation in the Wood Frog, Rana sylvatica. Evolution, 2004. 58(1): p. 160-165.
51. Sordino, P., F. van der Hoeven, and D. Duboule, Hox gene expression in teleost fins and the origin of vertebrate digits. Nature, 1995. 375(6533): p. 678-681.
52. Storey, K.B., Organ-specific metabolism during freezing and thawing in a freeze-tolerant frog. Am J Physiol Regul Integr Comp Physiol, 1987. 253(2): p. R292-297.
53. Storey, K.B., Life in a frozen state: adaptive strategies for natural freeze tolerance in amphibians and reptiles. Am J Physiol Regul Integr Comp Physiol, 1990. 258(3): p. R559-568.
54. Storey, K.B., J. Bischof, and B. Rubinsky, Cryomicroscopic analysis of freezing in liver of the freeze-tolerant wood frog. Am J Physiol Regul Integr Comp Physiol, 1992. 263(1): p. R185-194.
55. Storey, K.B. and J.M. Storey, Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians. Comp Biochem Physiol A Comp Physiol, 1986. 83(4): p. 613-7.
56. Takahashi, Y., et al., Distribution of blue-sensitive photoreceptors in amphibian retinas. FEBS Lett, 2001. 501(2-3): p. 151-5.
57. Thomson, K.S., M. Sutton, and B. Thomas, A larval Devonian lungfish. Nature, 2003. 426(6968): p. 833-4.
58. Tsonis, P.A., et al., A newt’s eye view of lens regeneration. Int J Dev Biol, 2004. 48(8-9): p. 975-80.
59. Vulliemoz, S., O. Raineteau, and D. Jabaudon, Reaching beyond the midline: why are human brains cross wired? The Lancet Neurology, 2005. 4(2): p. 87-99.
60. Yokoyama, S., et al., Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci U S A, 1999. 96(11): p. 6279-84.
61. Zhu, M. and P.E. Ahlberg, The origin of the internal nostril of tetrapods. Nature, 2004. 432(7013): p. 94-7.
Ch14
1. Toh, Y. and J.Y. Okamura, Behavioural responses of the tiger beetle larva to moving objects: role of binocular and monocular vision. J Exp Biol, 2001. 204(4): p. 615-625.
2. Sbita, S.J., R.C. Morgan, and E.K. Buschbeck, Eye and optic lobe metamorphosis in the sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae). Arthropod Struct Dev, 2007. 36(4): p. 449-62.
3. Warrant, E.J. and P.D. McIntyre, Limitations to resolution in superposition eyes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990. 167(6): p. 785-803.
4. Bisazza, A., L.J. Rogers, and G. Vallortigara, The origins of cerebral asymmetry: a review of evidence of behavioural and brain lateralization in fishes, reptiles and amphibians. Neurosci Biobehav Rev, 1998. 22(3): p. 411-26.
5. Lall, A.B., et al., Spectral correspondence between visual spectral sensitivity and bioluminescence emission spectra in the click beetle Pyrophorus punctatissimus (Coleoptera: Elateridae). J Insect Physiol, 2000. 46(7): p. 1137-1141.
6. Chong, L.D., Two Eyes in One. Science, 2010. 329(5997): p. 1259.
7. Lall, A.B., et al., Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2010. 196(9): p. 629-38.
8. Gilbert, C., Visual determinants of escape in tiger beetle larvae (Cicindelidae). Journal of Insect Behavior, 1989. 2(4): p. 557-574.
Ch15
1. Anh, J.N., [Conus papillaris of reptiles. I. Ultrastructure in the saurian (Anguis fragilis, Anguidae)]. Z Mikrosk Anat Forsch, 1969. 81(1): p. 97-110.
2. Autumn, K., et al., Adhesive force of a single gecko foot-hair. Nature, 2000. 405(6787): p. 681-685.
3. Bowmaker, J.K., E.R. Loew, and M. Ott, The cone photoreceptors and visual pigments of chameleons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2005. 191(10): p. 925-32.
4. Braekevelt, C.R., Fine structure of the conus papillaris in the bobtail goanna (Tiliqua rugosa). Histol Histopathol, 1989. 4(3): p. 287-93.
5. Casey Y-J Ung, A.C.B.M., An enigmatic eye: the histology of the tuatara pineal complex. 2004. p. 614-618.
6. Dieterich, C.E. and H.J. Dieterich, [Comparative electron microscopy studies on the capillary endothelium of the conus papillaris in lizards (Sauria)]. Verh Anat Ges, 1975. 69: p. 643-50.
7. Dieterich, C.E., H.J. Dieterich, and R. Hildebrand, Comparative electron-microscopic studies on the conus papillaris and its relationship to the retina in night and day active geckos. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 1976. 200(3): p. 279-92.
8. Dieterich, H.J. and C.E. Dieterich, [Comparative electron microscopy studies on the pecten oculi in birds and the conus papillaris in reptiles]. Verh Anat Ges, 1975. 69: p. 635-42.
9. Eakin, R.M., The Third Eye. 1973: Berkeley, University of California Press.
10. El Hassni, M., et al., Localization of motoneurons innervating the extraocular muscles in the chameleon (Chamaeleo chameleon). Anat Embryol (Berl), 2000. 201(1): p. 63-74.
11. Gioanni, H., M. Bennis, and A. Sansonetti, Visual and vestibular reflexes that stabilize gaze in the chameleon. Vis Neurosci, 1993. 10(5): p. 947-56.
12. Hedges, S.B. and L.L. Poling, A molecular phylogeny of reptiles. Science, 1999. 283(5404): p. 998-1001.
13. Herrel, A., J. Cleuren, and F. De Vree, Prey capture in the lizard Agama stellio. Journal of Morphology, 1995. 224(3): p. 313-329.
14. Horridge, G.A., B. Walcott, and A.C. Ioannides, The tiered retina of Dytiscus: a new type of compound eye. Proc R Soc Lond B Biol Sci, 1970. 175(38): p. 83-94.
15. Jasinski, A., Fine structure of capillaries in the conus papillaris of the limbless lizard, Ophisaurus apodus (anguidae, lacertilia). Cell Tissue Res, 1977. 182(3): p. 421-4.
16. Kawamura, S. and S. Yokoyama, Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis). Vision Res, 1998. 38(1): p. 37-44.
17. Klein, D.C., The 2004 Aschoff/Pittendrigh lecture: Theory of the origin of the pineal gland–a tale of conflict and resolution. J Biol Rhythms, 2004. 19(4): p. 264-79.
18. Land, M.F., Fast-focus telephoto eye. Nature, 1995. 373(6516): p. 658-9.
19. Loew, E.R., et al., Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J Exp Biol, 2002. 205(7): p. 927-938.
20. Marmor, M.F., et al., Visual Insignificance of the Foveal Pit: Reassessment of Foveal Hypoplasia as Fovea Plana. Arch Ophthalmol, 2008. 126(7): p. 907-913.
21. Meyer-Rochow, V.B., S. Wohlfahrt, and P.K. Ahnelt, Photoreceptor cell types in the retina of the tuatara (Sphenodon punctatus) have cone characteristics. Micron, 2005. 36(5): p. 423-8.
22. Murphy, C.J. and H.C. Howland, On the gekko pupil and scheiner’s disc. Vision Research, 1986. 26(5): p. 815-817.
23. Nguyen, H.A.J., [The ultrastructure of the conus papillaris in Zonosaurus ornatus (Gerrhosauridea)]. Acta Anat (Basel), 1974. 88(1): p. 44-55.
24. Nguyen-Legros, J., Innervation of the conus papillaris in the eye of lacertilians. Albrecht Von Graefes Arch Klin Exp Ophthalmol, 1978. 208(1-3): p. 169-75.
25. Ott, M., Chameleons have independent eye movements but synchronise both eyes during saccadic prey tracking. Exp Brain Res, 2001. 139(2): p. 173-9.
26. Ott, M. and F. Schaeffel, A negatively powered lens in the chameleon. Nature, 1995. 373(6516): p. 692-4.
27. Ott, M., F. Schaeffel, and W. Kirmse, Binocular vision and accommodation in prey-catching chameleons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1998. 182(3): p. 319-330.
28. Packard, G.C. and M.J. Packard, Evolution of the Cleidoic Egg among Reptilian Antecedents of Birds. American Zoologist, 1980. 20(2): p. 351-362.
29. Rieppel, O., Turtle origins. Science, 1999. 283(5404): p. 945-6.
30. Roth, L.S., et al., The pupils and optical systems of gecko eyes. J Vis, 2009. 9(3): p. 27 1-11.
31. Sandor, P.S., M.A. Frens, and V. Henn, Chameleon eye position obeys Listing’s law. Vision Res, 2001. 41(17): p. 2245-51.
32. Schmid, K.L., H.C. Howland, and M. Howland, Focusing and accommodation in tuatara <i>(Sphenodon punctatus)</i>. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992. 170(3): p. 263-266.
33. Sivak, J.G., Historical note: the vertebrate median eye. Vision Res, 1974. 14(1): p. 137-40.
34. Solessio, E. and G.A. Engbretson, Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature, 1993. 364(6436): p. 442-5.
35. Su, C.Y., et al., Parietal-eye phototransduction components and their potential evolutionary implications. Science, 2006. 311(5767): p. 1617-21.
36. Tansley, K., The gecko retina. Vision Research, 1964. 4(1-2): p. 33-37, IN9-IN14.
37. Wainwright, P.C. and A.F. Bennett, The Mechanism of Tongue Projection in Chameleons: I. Electromyographic Tests of Functional Hypotheses. 1992. p. 1-21.
38. Xiong, W.H., E.C. Solessio, and K.W. Yau, An unusual cGMP pathway underlying depolarizing light response of the vertebrate parietal-eye photoreceptor. Nat Neurosci, 1998. 1(5): p. 359-65.
39. Yau, K.-W., 34.1. Photoreception in the lizard parietal eye: Implications about ciliary-photoreceptor evolution. Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology, 2007. 148(Supplement 1): p. S145-S145.
Ch16
1. A new genus of ichthyosaur from the Late Triassic Pardonet Formation of British Columbia: bridging the Triassic Jurassic gap. Canadian Journal of Earth Sciences, 2001. 38: p. 983-1002.
2. Andrews, K.D., An Endochondral Rather than a Dermal Origin for Scleral Ossicles in Cryptodiran Turtles. Journal of Herpetology, 1996. 30(2): p. 257-260.
3. Autumn, K., et al., Adhesive force of a single gecko foot-hair. Nature, 2000. 405(6787): p. 681-685.
4. Brudenall, D.K., I.R. Schwab, and K.A. Fritsches, Ocular morphology of the Leatherback sea turtle (Dermochelys coriacea). Vet Ophthalmol, 2008. 11(2): p. 99-110.
5. Casey Y-J Ung, A.C.B.M., An enigmatic eye: the histology of the tuatara pineal complex. 2004. p. 614-618.
6. Eakin, R.M., The Third Eye. 1973: Berkeley, University of California Press.
7. Ehrenfeld, D.W. and A.L. Koch, Visual accommodation in the green turtle. Science, 1967. 155(764): p. 827-8.
8. Franz-Odendaal, T.A., Intramembranous ossification of scleral ossicles in Chelydra serpentina. Zoology (Jena), 2006. 109(1): p. 75-81.
9. Hall, B.K. and T. Miyake, The membranous skeleton: the role of cell condensations in vertebrate skeletogenesis. Anat Embryol (Berl), 1992. 186(2): p. 107-24.
10. Hedges, S.B. and L.L. Poling, A molecular phylogeny of reptiles. Science, 1999. 283(5404): p. 998-1001.
11. Henze, M.J., et al., Accommodation behaviour during prey capture in the Vietnamese leaf turtle ( Geoemyda spengleri). J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2004. 190(2): p. 139-46.
12. Humphries, S. and G.D. Ruxton, Why did some ichthyosaurs have such large eyes? J Exp Biol, 2002. 205(4): p. 439-441.
13. Iwabe, N., et al., Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol, 2005. 22(4): p. 810-3.
14. Janke, A. and U. Arnason, The complete mitochondrial genome of Alligator mississippiensis and the separation between recent archosauria (birds and crocodiles). Mol Biol Evol, 1997. 14(12): p. 1266-72.
15. Krenz, J.G., et al., Molecular phylogenetics and evolution of turtles. Mol Phylogenet Evol, 2005. 37(1): p. 178-91.
16. Kuratani, S., The development of the orbital region of Caretta caretta (Chelonia, Reptilia). J Anat, 1987. 154: p. 187-200.
17. Loew, E.R., et al., Visual pigments and oil droplets in diurnal lizards: a comparative study of Caribbean anoles. J Exp Biol, 2002. 205(7): p. 927-938.
18. Loew, E.R. and V.I. Govardovskii, Photoreceptors and visual pigments in the red-eared turtle, Trachemys scripta elegans. Vis Neurosci, 2001. 18(5): p. 753-7.
19. Lutz, P.L. and J.A. Musick, The biology of sea turtles. Marine science series. 1997, Boca Raton, Fla: CRC Press. 432 p.
20. Marmor, M.F., et al., Visual Insignificance of the Foveal Pit: Reassessment of Foveal Hypoplasia as Fovea Plana. Arch Ophthalmol, 2008. 126(7): p. 907-913.
21. Motani, R., Rulers of the Jurassic Seas. Scientific American Special Edition, 2004. 14(2): p. 4.
22. Motani, R., B.M. Rothschild, and W. Wahl, Large eyeballs in diving ichthyosaurs. Nature, 1999. 402(6763): p. 747-747.
23. Murphy, C.J. and H.C. Howland, On the gekko pupil and scheiner’s disc. Vision Research, 1986. 26(5): p. 815-817.
24. Ott, M. and F. Schaeffel, A negatively powered lens in the chameleon. Nature, 1995. 373(6516): p. 692-4.
25. Rieppel, O., Turtle Origins. Science, 1999. 283(5404): p. 945-946.
26. Rieppel, O. and R.R. Reisz, THE ORIGIN AND EARLY EVOLUTION OF TURTLES. Annual Review of Ecology and Systematics, 1999. 30(1): p. 1-22.
27. Roth, L.S., et al., The pupils and optical systems of gecko eyes. J Vis, 2009. 9(3): p. 27 1-11.
28. Sillman, A.J., S.J. Ronan, and E.R. Loew, Histology and Microspectrophotometry of the Photoreceptors of a Crocodilian, Alligator mississippiensis. Proceedings of the Royal Society of London. Series B: Biological Sciences, 1991. 243(1306): p. 93-98.
29. Sipe, G.O., et al., Spectral sensitivity of the photointrinsic iris in the red-eared slider turtle (Trachemys scripta elegans). Vision Res, 2011. 51(1): p. 120-30.
30. Smith, W.C., et al., Alligator rhodopsin: sequence and biochemical properties. Exp Eye Res, 1995. 61(5): p. 569-78.
31. Suburo, A.M. and J.A. Scolaro, The eye of the magellanic penguin (Spheniscus magellanicus): structure of the anterior segment. Am J Anat, 1990. 189(3): p. 245-52.
32. Tansley, K., The gecko retina. Vision Research, 1964. 4(1-2): p. 33-37, IN9-IN14.
33. Wainwright, P.C. and A.F. Bennett, The Mechanism of Tongue Projection in Chameleons: I. Electromyographic Tests of Functional Hypotheses. 1992. p. 1-21.
34. Zimmer, C., Jurassic Genome. Science, 2007. 315(5817): p. 1358-1359.
Ch171. Chang, B.S., et al., Recreating a functional ancestral archosaur visual pigment. Mol Biol Evol, 2002. 19(9): p. 1483-9.
2. Chure, D.J., On the orbit of theropod dinosaurs. GAIA, 2000. 15.
3. Curry Rogers, K. and C.A. Forster, The last of the dinosaur titans: a new sauropod from Madagascar. Nature, 2001. 412(6846): p. 530-4.
4. Kundrat, M. and J. Janacek, Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia. Naturwissenschaften, 2007. 94(9): p. 769-78.
5. Stevens, K.A., Binocular Vision in Theropod Dinosaurs. Journal of Vertebrate Paleontology, 2006. 26(2): p. 321-330.
6. Unwin, D.M., Palaeontology: Smart-winged pterosaurs. Nature, 2003. 425(6961): p. 910-911.
7. Witmer, L.M., Dinosaurs: Fuzzy origins for feathers. Nature, 2009. 458(7236): p. 293-295.
8. Witmer, L.M., et al., Neuroanatomy of flying reptiles and implications for flight, posture and behaviour. Nature, 2003. 425(6961): p. 950-3.
9. Zheng, X.-T., et al., An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature, 2009. 458(7236): p. 333-336.
Ch18
1. Akasaki, T., et al., Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Mol Phylogenet Evol, 2006. 38(3): p. 648-58.
2. Budelmann, B.U., Active marine predators: The sensory world of cephalopods. Marine and Freshwater Behaviour and Physiology, 1996. 27(2): p. 59 – 75.
3. Budelmann, B.U. and J.Z. Young, The Statocyst-Oculomotor System of Octopus vulgaris: Extraocular Eye Muscles, Eye Muscle Nerves, Statocyst Nerves and the Oculomotor Centre in the Central Nervous System. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1984. 306(1127): p. 159-189.
4. Budelmann, B.U. and J.Z. Young, The oculomotor system of decapod cephalopods: eye muscles, eye muscle nerves, and the oculomotor neurons in the central nervous system. Philos Trans R Soc Lond B Biol Sci, 1993. 340(1291): p. 93-125.
5. Cole, A.G. and B.K. Hall, Cartilage differentiation in cephalopod molluscs. Zoology, 2009. 112(1): p. 2-15.
6. Denton, E.J. and F.J. Warren, Eyes of the Histioteuthidae. Nature, 1968. 219(5152): p. 400-401.
7. Douglas, R.H., R. Williamson, and H.J. Wagner, The pupillary response of cephalopods. J Exp Biol, 2005. 208(Pt 2): p. 261-5.
8. Froesch, D., On the fine structure of the Octopus iris. Z Zellforsch Mikrosk Anat, 1973. 145(1): p. 119-29.
9. Grisley, M.S., P.R. Boyle, and L.N. Key, Eye puncture as a route of entry for saliva during predation on crabs by the octopus Eledone cirrhosa (Lamarck). Journal of Experimental Marine Biology and Ecology, 1996. 202(2): p. 225-237.
10. Hara, T. and R. Hara, Retinochrome and rhodopsin in the extraocular photoreceptor of the squid, Todarodes. J Gen Physiol, 1980. 75(1): p. 1-19.
11. Jagger, W.S. and P.J. Sands, A wide-angle gradient index optical model of the crystalline lens and eye of the octopus. Vision Res, 1999. 39(17): p. 2841-52.
12. Jones, B.W. and M.K. Nishiguchi, Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Marine Biology, 2004. 144(6): p. 1151-1155.
13. Kapoor, B.G. and T.J. Hara, Sensory biology of jawed fishes : new insights. 2001, Enfield, (NH): Science Publishers. xiii, 387 p.
14. Mather, J.A. and R.C. Anderson, Personalities of Octopuses (Octopus rubescens). Journal of Comparative Psychology, 1993. 107(3): p. 336-340.
15. Mather, J.A. and R.C. Anderson, Exploration, Play, and Habituation in Octopuses (Octopus dofleini). Journal of Comparative Psychology, 1999. 113(3): p. 333-338.
16. Matthew, P., A description of the nuchal organ, a possible photoreceptor, in <i>Euprymna scolopes</i> and other cephalopods. Journal of Zoology, 2000. 252(2): p. 163-177.
17. McFall-Ngai, M.J., Negotiations between animals and bacteria: the [`]diplomacy’ of the squid-vibrio symbiosis. Comparative Biochemistry and Physiology – Part A: Molecular & Integrative Physiology, 2000. 126(4): p. 471-480.
18. Miller, A.M., et al., Rho GTPases regulate rhabdom morphology in octopus photoreceptors. Vis Neurosci, 2005. 22(3): p. 295-304.
19. Muntz, W.R.A. and J. Gwyther, Short Communication: The Visual Acuity of Octopuses for Gratings of Different Orientations. J Exp Biol, 1989. 142(1): p. 461-464.
20. Ogura, A., K. Ikeo, and T. Gojobori, Comparative Analysis of Gene Expression for Convergent Evolution of Camera Eye Between Octopus and Human. 2004. p. 1555-1561.
21. Ogura, A., K. Ikeo, and T. Gojobori, Comparative Analysis of Gene Expression for Convergent Evolution of Camera Eye Between Octopus and Human. Genome Research, 2004. 14(8): p. 1555-1561.
22. Packard, A., Visual acuity and eye growth in octopus vulgaris. Monitore zoologico. Italian journal of zoology, 1969. 3: p. 13.
23. Packard, A., CEPHALOPODS AND FISH: THE LIMITS OF CONVERGENCE. Biological Reviews, 1972. 47(2): p. 241-307.
24. Parry, M., A description of the nuchal organ, a possible photoreceptor, in Euprymna scolopes and other cephalopods. Journal of Zoology, 2000. 252(2): p. 163-177.
25. Schaeffel, F., C.J. Murphy, and H.C. Howland, Accommodation in the cuttlefish (Sepia officinalis). J Exp Biol, 1999. 202(22): p. 3127-3134.
26. Schwab, I.R., A well armed predator. Br J Ophthalmol, 2003. 87(7): p. 812.
27. Shashar, N., et al., Cuttlefish use polarization sensitivity in predation on silvery fish. Vision Res, 2000. 40(1): p. 71-5.
28. Sivak, J.G., Optical properties of a cephalopod eye (the short finned squid,<i>Illex illecebrosus</i>). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1982. 147(3): p. 323-327.
29. Sweeney, A.M., S.H.D. Haddock, and S. Johnsen, Comparative visual acuity of coleoid cephalopods. Integrative and Comparative Biology, 2007. 47(6): p. 808-814.
30. Wentworth, S.L. and W.R.A. Muntz, Asymmetries in the sense organs and central nervous system of the squid <i>Histioteuthis</i>. Journal of Zoology, 1989. 219(4): p. 607-619.
31. Wentworth, S.L. and W.R.A. Muntz, Development of the eye and optic lobe of Octopus. Journal of Zoology, 1992. 227(4): p. 673-684.
32. Young, J.Z., Regularities in the retina and optic lobes of octopus in relation to form discrimination. Nature, 1960. 186: p. 836-9.
33. Young, J.Z., The Visual System of Octopus : (1)Regularities in the Retina and Optic Lobes of Octopus in Relation to Form Discrimination. Nature, 1960. 186(4728): p. 836-839.
34. Young, R.E., Function of the Dimorphic Eyes in the Midwater Squid Histioteuthis dofleini. Pacific Sciences, 1975. 29(2): p. 211-218.
35. Young, R.E., Michael Vecchione, and Katharina M. Mangold, Analysis of morphology to determine primary sister-taxon relationships with coleoid cephalopods. 2008.
36. Young, R.E. and C.F. Roper, Bioluminescent countershading in midwater animals: evidence from living squid. Science, 1976. 191(4231): p. 1046-8.
37. Young, R.E., M. Vecchione, and D.T. Donovan, The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science, 1998. 20(1): p. 393 – 420.
Ch19
1. Campbell, A., Biological infrared imaging and sensing. Micron, 2002. 33: p. 211-225.
2. Caprette, C.L., Conquering the cold shudder the origin and evolution of snake eyes. 2005.
3. Caprette, C.L., et al., The origin of snakes (Serpentes) as seen through eye anatomy. Biological Journal of the Linnean Society, 2004. 81(4): p. 469-482.
4. Fry, B.G., et al., Early evolution of the venom system in lizards and snakes. Nature, 2006. 439(7076): p. 584-8.
5. Gorbunov, V., et al., Biological thermal detection: micromechanical and microthermal properties of biological infrared receptors. Biomacromolecules, 2002. 3(1): p. 106-15.
6. Grace, M.S., et al., Prey targeting by the infrared-imaging snake Python molurus: effects of experimental and congenital visual deprivation. Behavioural Brain Research, 2001. 119(1): p. 23-31.
7. Isbell, L.A., Snakes as agents of evolutionary change in primate brains. J Hum Evol, 2006. 51(1): p. 1-35.
8. Knight, A. and D.P. Mindell, On the Phylogenetic Relationship of Colubrinae, Elapidae, and Viperidae and the Evolution of Front-Fanged Venom Systems in Snakes. Copeia, 1994. 1994(1): p. 1-9.
9. Muller, J., et al., Eocene lizard from Germany reveals amphisbaenian origins. Nature, 2011. 473(7347): p. 364-367.
10. Sillman, A.J., et al., Photoreceptors and visual pigments in the retina of the fully anadromous green sturgeon (Acipenser medirostrus) and the potamodromous pallid sturgeon (Scaphirhynchus albus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2005. 191(9): p. 799-811.
11. Sillman, A.J., J.K. Carver, and E.R. Loew, The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). J Exp Biol, 1999. 202 (Pt 14): p. 1931-8.
12. Sillman, A.J., et al., The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study. J Comp Physiol A, 1997. 181(2): p. 89-101.
13. Sillman, A.J., J.L. Johnson, and E.R. Loew, Retinal photoreceptors and visual pigments in Boa constrictor imperator. J Exp Zool, 2001. 290(4): p. 359-65.
14. Xiang, Y., et al., Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. Nature, 2010. 468(7326): p. 921-926.
Ch20
1. Ault, S.J., Electroretinograms and retinal structure of the eastern screech owl and great horned owl. Raptor Research, 1984. 18: p. 62-66.
2. Bellhorn, M.B., R.W. Bellhorn, and D.S. Poll, Permeability of fluorescein-labelled dextrans in fundus fluorescein angiography of rats and birds. Experimental Eye Research, 1977. 24(6): p. 595-605.
3. Bloch, S. and C. Martinoya, Are colour oil droplets the basis of the pigeon’s chromatic space? Vision Res, 1971. Suppl 3: p. 411-8.
4. Bohorquez Mahecha, G.A. and C. Aparecida de Oliveira, An additional bone in the sclera of the eyes of owls and the common potoo (Nictibius griseus) and its role in the contraction of the nictitating membrane. Acta Anat (Basel), 1998. 163(4): p. 201-11.
5. Bowmaker, J.K., The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res, 1977. 17(10): p. 1129-38.
6. Bowmaker, J.K., et al., Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds. Vision Res, 1997. 37(16): p. 2183-2194.
7. Bowmaker, J.K. and G.R. Martin, Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl). Vision Res, 1978. 18(9): p. 1125-30.
8. Braekevelt, C.R., Fine structure of the pecten oculi in the American crow (Corvus brachyrhynchos). Anat Histol Embryol, 1994. 23(4): p. 357-66.
9. Bravo, H. and J.D. Pettigrew, The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia. J Comp Neurol, 1981. 199(3): p. 419-41.
10. Broxmeyer, H.E., et al., Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med, 1996. 184(5): p. 1825-32.
11. Chen, D.M., J.S. Collins, and T.H. Goldsmith, The ultraviolet receptor of bird retinas. Science, 1984. 225(4659): p. 337-40.
12. Chiappe, L.M., Glorified dinosaurs : the origin and early evolution of birds. 2007, Sydney, Australia
Hoboken, N.J.: University of South Wales Press ;
John Wiley & Sons. ix, 263 p.
13. Cooper, G., F. Grieser, and S. Biggs, Butyl Acrylate/Vinyl Acetate Copolymer Latex Synthesis Using Ultrasound As an Initiator. J Colloid Interface Sci, 1996. 184(1): p. 52-63.
14. Davies, M.N.O. and P.R. Green, Head-Bobbing During Walking, Running and Flying: Relative Motion Perception in the Pigeon. J Exp Biol, 1988. 138(1): p. 71-91.
15. Edwards, L., Sharp-eyed robins can see magnetic fields. physorg.com, 2010.
16. Emmerton, J., Pattern discrimination in the near-ultraviolet by pigeons. Percept Psychophys, 1983. 34(6): p. 555-9.
17. Fite, K.V. and S. Rosenfield-Wessels, A comparative study of deep avian foveas. Brain Behav Evol, 1975. 12(1-2): p. 97-115.
18. Flannery, M.C., Looking at fossile in new ways. American Biology Teacher, 2005. 67(1): p. 5.
19. Galifret, Y., et al., Centrifugal control in the visual system of the pigeon. Vision Res, 1971. Suppl 3: p. 185-200.
20. Gibson, L.J., Woodpecker pecking: how woodpeckers avoid brain injury. Journal of Zoology, 2006. 270(3): p. 462-465.
21. Goldsmith, T.H., Hummingbirds see near ultraviolet light. Science, 1980. 207(4432): p. 786-8.
22. Gordon, D., Letter: Woodpeckers, gannets, and head injury. Lancet, 1976. 1(7963): p. 801-2.
23. Hackett, S.J., et al., A phylogenomic study of birds reveals their evolutionary history. Science, 2008. 320(5884): p. 1763-8.
24. Hall, M.I., The anatomical relationships between the avian eye, orbit and sclerotic ring: implications for inferring activity patterns in extinct birds. J Anat, 2008. 212(6): p. 781-94.
25. Hart, N.S., Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol [A], 2001. 187(9): p. 685-97.
26. Hart, N.S., The visual ecology of avian photoreceptors. Prog Retin Eye Res, 2001. 20(5): p. 675-703.
27. Hodos, W., et al., Normative data for pigeon vision. Vision Res, 1985. 25(10): p. 1525-7.
28. Howland, H.C., M. Howland, and K.L. Schmid, Focusing and accommodation in the brown kiwi (<i>Apteryx australis</i>). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992. 170(6): p. 687-689.
29. Howland, H.C. and J.G. Sivak, Penguin vision in air and water. Vision Res, 1984. 24(12): p. 1905-9.
30. Hu, D., et al., A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature, 2009. 461(7264): p. 640-3.
31. Hunt, D.M., et al., Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1531): p. 2941-2955.
32. Ji, Q., et al., The distribution of integumentary structures in a feathered dinosaur. Nature, 2001. 410(6832): p. 1084-8.
33. Johnston, M.C., et al., Origins of avian ocular and periocular tissues. Exp Eye Res, 1979. 29(1): p. 27-43.
34. Jones, M.P., K.E. Pierce Jr, and D. Ward, Avian Vision: A Review of Form and Function with Special Consideration to Birds of Prey. Journal of Exotic Pet Medicine, 2007. 16(2): p. 69-87.
35. Katzir, G. and H.C. Howland, Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol, 2003. 206(5): p. 833-841.
36. Katzir, G. and G.R. Martin, Visual fields in herons (Ardeidae) — panoramic vision beneath the bill. Naturwissenschaften, 1994. 81(4): p. 182-184.
37. Kelber, A. and U. Henique, Trichromatic colour vision in the hummingbird hawkmoth, Macroglossum stellatarum L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1999. 184(5): p. 535-541.
38. Kevan, P.G., L. Chittka, and A.G. Dyer, Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. J Exp Biol, 2001. 204(Pt 14): p. 2571-80.
39. King-Smith, P.E., Absorption spectra and function of the coloured oil drops in the pigeon retina. Vision Res, 1969. 9(11): p. 1391-9.
40. Kolmer, W., Über das Auge des Eisvogels (Alcedo attis attis). Pflügers Archiv European Journal of Physiology, 1924. 204(1): p. 266-274.
41. Kram, Y.A., S. Mantey, and J.C. Corbo, Avian Cone Photoreceptors Tile the Retina as Five Independent, Self-Organizing Mosaics. PLoS One, 2010. 5(2): p. e8992.
42. Kurochkin, E.N., et al., A fossil brain from the Cretaceous of European Russia and avian sensory evolution. Biol Lett, 2007. 3(3): p. 309-13.
43. Levy, B. and J.G. Sivak, Mechanisms of accommodation in the bird eye. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1980. 137(3): p. 267-272.
44. Macko, K.A. and W. Hodos, Near point of accommodation in pigeons. Vision Res, 1985. 25(10): p. 1529-30.
45. Marshall, A.J., Biology and comparative physiology of birds. 1960, New York,: Academic Press. 2 v.
46. Martin, G., et al., The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften, 2004. 91(1): p. 26-9.
47. Martin, G.R., Visual fields in woodcocks Scolopax rusticola (Scolopacidae; Charadriiformes). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994. 174(6): p. 787-793.
48. Martin, G.R., et al., Vision in Birds, in The Senses: A Comprehensive Reference. 2008, Academic Press: New York. p. 25-52.
49. May, P.R., et al., Woodpecker drilling behavior. An endorsement of the rotational theory of impact brain injury. Arch Neurol, 1979. 36(6): p. 370-3.
50. May, P.R., et al., Woodpeckers and head injury. Lancet, 1976. 1(7957): p. 454-5.
51. Meyer-Rochow, V.B. and J. Gál, Dimensional limits for arthropod eyes with superposition optics. Vision Research, 2004. 44(19): p. 2213-2223.
52. Moller, A., et al., Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften, 2004. 91(12): p. 585-8.
53. Muller, B., et al., Bat eyes have ultraviolet-sensitive cone photoreceptors. PLoS One, 2009. 4(7): p. e6390.
54. Murphy, C.J. and H.C. Howland, Owl eyes: Accommodation, corneal curvature and refractive state. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1983. 151(3): p. 277-284.
55. Nieder, A. and H. Wagner, Perception and neuronal coding of subjective contours in the owl. Nat Neurosci, 1999. 2(7): p. 660-663.
56. Pettigrew, J.D., Binocular Visual Processing in the Owl’s Telencephalon. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1979. 204(1157): p. 435-454.
57. Pettigrew, J.D. and M. Konishi, Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science, 1976. 193(4254): p. 675-8.
58. Pettigrew, J.D., J. Wallman, and C.F. Wildsoet, Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature, 1990. 343(6256): p. 362-3.
59. Phillips, K., SIBLINGS SET THE SOCIAL SCENE. J Exp Biol, 2004. 207(13): p. i-.
60. Prum, R.O., Palaeontology: Dinosaurs take to the air. Nature, 2003. 421(6921): p. 323-4.
61. Reymond, L., Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res, 1985. 25(10): p. 1477-91.
62. Ritz, T., S. Adem, and K. Schulten, A Model for Photoreceptor-Based Magnetoreception in Birds. Biophysical Journal, 2000. 78(2): p. 707-718.
63. Ritz, T., et al., Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature, 2004. 429(6988): p. 177-80.
64. Ritz, T., et al., Magnetic Compass of Birds Is Based on a Molecule with Optimal Directional Sensitivity. 2009. 96(8): p. 3451-3457.
65. Roberts, N.W., et al., A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region. Nat Photon, 2009. 3(11): p. 641-644.
66. Ruggeri, M., et al., Retinal Structure of Birds of Prey Revealed by Ultra-High Resolution Spectral-Domain Optical Coherence Tomography. Investigative Ophthalmology & Visual Science.
67. Ruggeri, M., et al., Retinal structure of birds of prey revealed by ultra-high resolution spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci, 2010. 51(11): p. 5789-95.
68. Schwab, I.R., Cure for a headache. British Journal of Ophthalmology, 2002. 86(8): p. 843.
69. Shaw, N.A., The neurophysiology of concussion. Prog Neurobiol, 2002. 67(4): p. 281-344.
70. Sivak, J.G., Avian mechanisms for vision in air and water. Trends in Neurosciences, 1980. 3(12): p. 314-317.
71. Tiemeier, O.W., The os opticus of birds. Journal of Morphology, 1950. 86(1): p. 25-46.
72. Tucker, V.A., The deep fovea, sideways vision and spiral flight paths in raptors. J Exp Biol, 2000. 203(Pt 24): p. 3745-54.
73. Vincent, J.F.V., Sahinkaya, M. N., O’Shea, W., A woodpecker hammer. Proceedings of the Institution of Mechanical Engineers, Part C: . Journal of Mechanical Engineering Science, 2007. 221(10): p. 1141-1147.
74. Vorobyev, M., Coloured oil droplets enhance colour discrimination. 2003. p. 1255-1261.
75. Witmer, L.M., Palaeontology: inside the oldest bird brain. Nature, 2004. 430(7000): p. 619-20.
76. Witmer, L.M., Palaeontology: Feathered dinosaurs in a tangle. Nature, 2009. 461(7264): p. 601-2.
77. Witmer, L.M., Dinosaurs: Fuzzy origins for feathers. Nature, 2009. 458(7236): p. 293-295.
78. Wood, C.A., The fundus oculi of birds, especially as viewed by the ophthalmoscope; a study in the comparative anatomy and physiology. 1917, Chicago,: The Lakeside Press. 3 p. ., 5-180 p.
79. Wygnanski-Jaffe, T., et al., Protective ocular mechanisms in woodpeckers. Eye, 2005. 21(1): p. 83-89.
80. Wygnanski-Jaffe, T., et al., Protective ocular mechanisms in woodpeckers. Eye (Lond), 2007. 21(1): p. 83-9.
81. Xu, X., et al., Four-winged dinosaurs from China. Nature, 2003. 421(6921): p. 335-40.
82. Young, S.R. and G.R. Martin, Optics of retinal oil droplets: a model of light collection and polarization detection in the avian retina. Vision Res, 1984. 24(2): p. 129-37.
83. Zheng, X.-T., et al., An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature, 2009. 458(7236): p. 333-336.
Ch21
1. Altner, I. and D. Burkhardt, Fine structure of the ommatidia and the occurrence of rhabdomeric twist in the dorsal eye of male Bibio marci (Diptera, Nematocera, Bibionidae). Cell Tissue Res, 1981. 215(3): p. 607-23.
2. Arikawa, K., Hindsight of Butterflies. BioScience, 2001. 51(3): p. 219-225.
3. Arikawa, K., K. Inokuma, and E. Eguchi, Pentachromatic visual system in a butterfly. Naturwissenschaften, 1987. 74(6): p. 297-298.
4. Arikawa, K. and D. Stavenga, Random array of colour filters in the eyes of butterflies. J Exp Biol, 1997. 200(Pt 19): p. 2501-6.
5. Arikawa, K., D. Suyama, and T. Fujii, Hindsight by genitalia: photo-guided copulation in butterflies. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1997. 180(4): p. 295-299.
6. Awata, H., M. Wakakuwa, and K. Arikawa, Evolution of color vision in pierid butterflies: blue opsin duplication, ommatidial heterogeneity and eye regionalization in Colias erate. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2009. 195(4): p. 401-8.
7. Barlow, H.B., The Size of Ommatidia in Apposition Eyes. J Exp Biol, 1952. 29(4): p. 667-674.
8. Beardsley, J.W., A New Fossil Scale Insect (Homoptera Coccoidea) From Canadian Amber. Psyche, 1969(3): p. 270-279.
9. Bernhard, C.G. and D. Ottoson, Quantitative Studies on Pigment Migration and Light Sensitivity in the Compound Eye at Different Light Intensities. J Gen Physiol, 1964. 47: p. 465-78.
10. Briscoe, A.D., Reconstructing the ancestral butterfly eye: focus on the opsins. J Exp Biol, 2008. 211(Pt 11): p. 1805-13.
11. Briscoe, A.D. and L. Chittka, THE EVOLUTION OF COLOR VISION IN INSECTS. Annu Rev Entomol, 2001. 46(1): p. 471-510.
12. Brooks, D.E., et al., Functional and structural analysis of the visual system in the rhesus monkey model of optic nerve head ischemia. Invest Ophthalmol Vis Sci, 2004. 45(6): p. 1830-40.
13. Burkhardt, D., I. Motte, and K. Lunau, Signalling fitness: larger males sire more offspring. Studies of the stalk-eyed fly Cyrtodiopsis whitei (Diopsidae, Diptera). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1994. 174(1): p. 61-64.
14. Burton, B.G. and S.B. Laughlin, Neural images of pursuit targets in the photoreceptor arrays of male and female houseflies Musca domestica. J Exp Biol, 2003. 206(Pt 22): p. 3963-77.
15. Buschbeck, E. and M. Friedrich, Evolution of Insect Eyes: Tales of Ancient Heritage, Deconstruction, Reconstruction, Remodeling, and Recycling. Evolution: Education and Outreach, 2008. 1(4): p. 448-462.
16. Buschbeck, E. and M. Hauser, The visual system of male scale insects. Naturwissenschaften, 2009. 96(3): p. 365-374.
17. Chapman, R.F., The insects : structure and function. 4th ed. 1998, Cambridge, UK ; New York, NY: Cambridge University Press. xvii, 770 p.
18. Cook, L.G., P.J. Gullan, and H.E. Trueman, A preliminary phylogeny of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea) based on nuclear small-subunit ribosomal DNA. Mol Phylogenet Evol, 2002. 25(1): p. 43-52.
19. Cronin, T.W., et al., Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol A, 2000. 186(1): p. 1-12.
20. Dacke, M., et al., Animal behaviour: Insect orientation to polarized moonlight. Nature, 2003. 424(6944): p. 33-33.
21. Duelli, P., An insect retina without microvilli in the male scale insect, Eriococcus sp. (eriococcidae, homoptera). Cell Tissue Res, 1978. 187(3): p. 417-27.
22. Eguchi, E., Retinular fine structure in compound eyes of diurnal and nocturnal sphingid moths. Cell Tissue Res, 1982. 223(1): p. 29-42.
23. Erren, T., et al., Clockwork blue: on the evolution of non-image-forming retinal photoreceptors in marine and terrestrial vertebrates. Naturwissenschaften, 2008. 95(4): p. 273-279.
24. Fischer, S., C.H. Muller, and V.B. Meyer-Rochow, How small can small be: The compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size. Vis Neurosci, 2010: p. 1-14.
25. Garamszegi, L.Z., A.P. Moller, and J. Erritzoe, Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc Biol Sci, 2002. 269(1494): p. 961-7.
26. Gilbert, C., Visual determinants of escape in tiger beetle larvae (Cicindelidae). Journal of Insect Behavior, 1989. 2(4): p. 557-574.
27. Greiner, B., et al., Neural organisation in the first optic ganglion of the nocturnal bee Megalopta genalis. Cell Tissue Res, 2004. 318(2): p. 429-37.
28. Grimaldi, D.A. and M.S. Engel, Evolution of the insects. 2005, Cambridge [U.K.] ; New York: Cambridge University Press. xv, 755 p.
29. Gullan, P.J. and M. Kosztarab, Adaptations in scale insects. Annu Rev Entomol, 1997. 42: p. 23-50.
30. HODGSON, C. and I. FOLDI, A review of the Margarodidae sensu Morrison
(Hemiptera: Coccoidea) and some related taxa based on
the morphology of adult males. Vol. 1. 2006: Magnolia Press. 250.
31. Holmes, R.S., D.W. Cooper, and J.L. Vandeberg, Marsupial and monotreme lactate dehydrogenase isozymes: phylogeny, ontogeny, and homology with eutherian mammals. J Exp Zool, 1973. 184(1): p. 127-48.
32. Hoonkanen, A., Meyer-Rochow, V. B., The eye of the parthenogenetic and minute moth Ectoedemia argyropeza (Zeller) (Lepidoptera: Nepticulidae). European Journal of Entomology, 2009. 160(4): p. 619-629.
33. Horridge, G.A., C. Giddings, and G. Stange, The Superposition Eye of Skipper Butterflies. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1972. 182(1069): p. 457-495.
34. Hsiao, H.S. and C. Susskind, Infrared and microwave communication by moths. Spectrum, IEEE, 1970. 7(3): p. 69-76.
35. Kelber, A., Innate preferences for flower features in the hawkmoth Macroglossum stellatarum. J Exp Biol, 1997. 200(4): p. 827-836.
36. Kelber, A., A. Balkenius, and E.J. Warrant, Scotopic colour vision in nocturnal hawkmoths. Nature, 2002. 419(6910): p. 922-5.
37. Kern, R. and D. Varju, Visual position stabilization in the hummingbird hawk moth, Macroglossum stellatarum L. I. Behavioural analysis. J Comp Physiol A, 1998. 182(2): p. 225-37.
38. Keskinen, E. and V.B. Meyer-Rochow, Post-embryonic photoreceptor development and dark/light adaptation in the spittle bug Philaenus spumarius (L.) (Homoptera, Cercopidae). Arthropod Structure & Development, 2004. 33(4): p. 405-417.
39. Kjer, K.M., R.J. Blahnik, and R.W. Holzenthal, Phylogeny of caddisflies (Insecta, Trichoptera). Zoologica Scripta, 2002. 31(1): p. 83-91.
40. Koshitaka, H., et al., Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Biol Sci, 2008. 275(1637): p. 947-54.
41. Koteja, J., Scale insects (Hemiptera: Coccinea) from cretaceous Myanmar (Burmese) amber. Journal of Systematic Palaeontology, 2004. 2(2): p. 109-114.
42. Lall, A.B., Spectral cues for the regulation of bioluminescent flashing activity in the males of twilight-active firefly Photinus scintillans (Coleoptera: Lampyridae) in nature. Journal of Insect Physiology, 1994. 40(4): p. 359-363.
43. Land, M.F., VISUAL ACUITY IN INSECTS. Annu Rev Entomol, 1997. 42(1): p. 147-177.
44. Land, M.F. and R.D. Fernald, The Evolution of Eyes. 1992. p. 1-29.
45. Marcos, S. and R. Navarro, Determination of the foveal cone spacing by ocular speckle interferometry: limiting factors and acuity predictions. J Opt Soc Am A Opt Image Sci Vis, 1997. 14(4): p. 731-40.
46. Nilsson, D.E., M.F. Land, and J. Howard, Afocal apposition optics in butterfly eyes. Nature, 1984. 312(5994): p. 561-563.
47. Nordstrom, P. and E.J. Warrant, Temperature-induced pupil movements in insect superposition eyes. J Exp Biol, 2000. 203(Pt 4): p. 685-92.
48. Obara, Y., H. Koshitaka, and K. Arikawa, Better mate in the shade: enhancement of male mating behaviour in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich environment. J Exp Biol, 2008. 211(Pt 23): p. 3698-702.
49. Plotkin, M., et al., Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis). Naturwissenschaften, 2010. 97(12): p. 1067-76.
50. Post, C.T.J. and T.H. Goldsmith, PIGMENT MIGRATION AND LIGHT-ADAPTATION IN THE EYE OF THE MOTH, GALLERIA MELLONELLA. Biol Bull, 1965. 128(3): p. 473-487.
51. Prud/’homme, B., et al., Body plan innovation in treehoppers through the evolution of an extra wing-like appendage. Nature, 2011. 473(7345): p. 83-86.
52. Qiu, X., et al., Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res, 2002. 307(3): p. 371-9.
53. Ribi, W.A., Ultrastructure and migration of screening pigments in the retina of Pieris rapae L. (Lepidoptera, Pieridae). Cell Tissue Res, 1978. 191(1): p. 57-73.
54. Rosenzweig, E., et al., Micromorphology of the dorsal ocelli of the Oriental hornet. J Gravit Physiol, 1998. 5(1): p. P113-4.
55. Shaw, S.R., The Photoreceptor Axon Projection and Its Evolution in the Neural Superposition Eyes of Some Primitive Brachyceran Diptera (Part 2 of 2). Brain, Behavior and Evolution, 1990. 35(2): p. 116-125.
56. Stavenga, D.G., Colour in the eyes of insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2002. 188(5): p. 337-48.
57. Stavenga, D.G., Reflections on colourful ommatidia of butterfly eyes. J Exp Biol, 2002. 205(Pt 8): p. 1077-85.
58. Stavenga, D.G., Partial coherence and other optical delicacies of lepidopteran superposition eyes. J Exp Biol, 2006. 209(Pt 10): p. 1904-13.
59. Stavenga, D.G. and K. Arikawa, Evolution of color and vision of butterflies. Arthropod Struct Dev, 2006. 35(4): p. 307-18.
60. Stavenga, D.G., et al., Light on the moth-eye corneal nipple array of butterflies. Proc Biol Sci, 2006. 273(1587): p. 661-7.
61. Stavenga, D.G., et al., Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften, 2001. 88(11): p. 477-81.
62. Stowasser, A., et al., Biological bifocal lenses with image separation. Curr Biol, 2010. 20(16): p. 1482-6.
63. Takeuchi, Y., K. Arikawa, and M. Kinoshita, Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol, 2006. 209(Pt 15): p. 2873-9.
64. Varela, F.G., The vertebrate and the (insect) compound eye in evolutionary perspective. Vision Res, 1971. Suppl 3: p. 201-9.
65. Vesteg, M., J. Krajcovic, and L. Ebringer, On the origin of eukaryotic cells and their endomembranes. Riv Biol, 2006. 99(3): p. 499-519.
66. Wakakuwa, M., et al., A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J Exp Biol, 2004. 207(Pt 16): p. 2803-10.
67. Warrant, E., K. Bartsch, and G.N. C, Physiological optics in the hummingbird hawkmoth: a compound eye without ommatidia. J Exp Biol, 1999. 202 (Pt 5): p. 497-511.
68. Warrant, E.J., et al., Nocturnal vision and landmark orientation in a tropical halictid bee. Curr Biol, 2004. 14(15): p. 1309-18.
69. Warrant, E.J., et al., Ocellar optics in nocturnal and diurnal bees and wasps. Arthropod Struct Dev, 2006. 35(4): p. 293-305.
70. Wilkinson, G.S., D.C. Presgraves, and L. Crymes, Male eye span in stalk-eyed flies indicates genetic quality by meiotic drive suppression. Nature, 1998. 391(6664): p. 276-279.
71. Yack, J.E., et al., The eyes of Macrosoma sp. (Lepidoptera: Hedyloidea): a nocturnal butterfly with superposition optics. Arthropod Struct Dev, 2007. 36(1): p. 11-22.
Ch22
1. Arrese, C., Pupillary mobility in four species of marsupials with differing lifestyles. Journal of Zoology, 2002. 256(2): p. 191-197.
2. Arrese, C., et al., Retinal Structure and Visual Acuity in a Polyprotodont Marsupial, the Fat-Tailed Dunnart (Sminthopsis crassicaudata). Brain, Behavior and Evolution, 1999. 53(3): p. 111-126.
3. Arrese, C.A., et al., Trichromacy in Australian marsupials. Curr Biol, 2002. 12(8): p. 657-60.
4. Arrese, C.A., et al., Topographies of retinal cone photoreceptors in two Australian marsupials. Vis Neurosci, 2003. 20(3): p. 307-11.
5. Asher, R.J., I. Horovitz, and M.R. Sanchez-Villagra, First combined cladistic analysis of marsupial mammal interrelationships. Mol Phylogenet Evol, 2004. 33(1): p. 240-50.
6. Bininda-Emonds, O.R.P., et al., The delayed rise of present-day mammals. Nature, 2007. 446(7135): p. 507-512.
7. Cardillo, M., et al., A species-level phylogenetic supertree of marsupials. Journal of Zoology, 2004. 264(1): p. 11-31.
8. Chiappe, L.M. and S. Bertelli, Palaeontology: skull morphology of giant terror birds. Nature, 2006. 443(7114): p. 929.
9. Cowing, J.A., et al., The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochem J, 2002. 367(Pt 1): p. 129-35.
10. Davies, W.L., et al., Visual pigments of the platypus: a novel route to mammalian colour vision. Curr Biol, 2007. 17(5): p. R161-3.
11. Grutzner, F. and J.A. Graves, A platypus’ eye view of the mammalian genome. Curr Opin Genet Dev, 2004. 14(6): p. 642-9.
12. Hemmi, J.M. and U. Grunert, Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Vis Neurosci, 1999. 16(2): p. 291-302.
13. Hunt, D.M., et al., The rod opsin pigments from two marsupial species, the South American bare-tailed woolly opossum and the Australian fat-tailed dunnart. Gene, 2003. 323: p. 157-62.
14. Hunt, D.M., et al., Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1531): p. 2941-2955.
15. Jacobs, G.H., et al., Opsin gene and photopigment polymorphism in a prosimian primate. Vision Res, 2002. 42(1): p. 11-8.
16. Luo, Z.X., Transformation and diversification in early mammal evolution. Nature, 2007. 450(7172): p. 1011-9.
17. Luo, Z.X., et al., An Early Cretaceous tribosphenic mammal and metatherian evolution. Science, 2003. 302(5652): p. 1934-40.
18. Manger, P.R. and J.D. Pettigrew, Electroreception and the Feeding Behaviour of Platypus (Ornithorhynchus anatinus: Monotremata: Mammalia). Philosophical Transactions: Biological Sciences, 1995. 347(1322): p. 359-381.
19. McMenamin, P.G., The unique paired retinal vascular pattern in marsupials: structural, functional and evolutionary perspectives based on observations in a range of species. Br J Ophthalmol, 2007. 91(10): p. 1399-405.
20. McMenamin, P.G. and W.J. Krause, Morphological observations on the unique paired capillaries of the opossum retina. Cell Tissue Res, 1993. 271(3): p. 461-8.
21. Messer, M., et al., Evolution of the Monotremes: Phylogenetic Relationship to Marsupials and Eutherians, and Estimation of Divergence Dates Based on α-Lactalbumin Amino Acid Sequences. Journal of Mammalian Evolution, 1998. 5(1): p. 95-105.
22. Nicol, S.C., et al., The echidna manifests typical characteristics of rapid eye movement sleep. Neurosci Lett, 2000. 283(1): p. 49-52.
23. Pettigrew, J.D., P.R. Manger, and S.L. Fine, The sensory world of the platypus. Philos Trans R Soc Lond B Biol Sci, 1998. 353(1372): p. 1199-210.
24. Proske, U. and E. Gregory, Electrolocation in the platypus–some speculations. Comp Biochem Physiol A Mol Integr Physiol, 2003. 136(4): p. 821-5.
25. Rowe, T., et al., The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci U S A, 2008. 105(4): p. 1238-42.
26. Shi, Y. and S. Yokoyama, Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8308-13.
27. van Rheede, T., et al., The platypus is in its place: nuclear genes and indels confirm the sister group relation of monotremes and Therians. Mol Biol Evol, 2006. 23(3): p. 587-97.
28. Wakefield, M.J., et al., Cone visual pigments of monotremes: filling the phylogenetic gap. Vis Neurosci, 2008. 25(3): p. 257-64.
29. Wroe, S., Killer kangaroos and other murderous marsupials. Sci Am, 1999. 280(5): p. 68-74.
30. Young, H.M. and J.D. Pettigrew, Cone photoreceptors lacking oil droplets in the retina of the echidna, Tachyglossus aculeatus (Monotremata). Vis Neurosci, 1991. 6(5): p. 409-20.
31. Young, H.M. and D.I. Vaney, The retinae of Prototherian mammals possess neuronal types that are characteristic of non-mammalian retinae. Vis Neurosci, 1990. 5(1): p. 61-6.
Ch23
1. Blakeslee, B. and G.H. Jacobs, Color vision in the ring-tailed lemur (Lemur catta). Brain Behav Evol, 1985. 26(3-4): p. 154-66.
2. Bowmaker, J.K., et al., Photosensitive and photostable pigments in the retinae of Old World monkeys. J Exp Biol, 1991. 156: p. 1-19.
3. Brudenall, D.K., et al., Optimized architecture for nutrition in the avascular retina of Megachiroptera. Anat Histol Embryol, 2007. 36(5): p. 382-8.
4. Carrie C. Veilleux, D.A.B., Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. 2009. p. 86-90.
5. Collin, S.P. and A.E.O. Trezise, The origins of colour vision in vertebrates. Clinical and Experimental Optometry, 2004. 87(4-5): p. 217-223.
6. Davis, F.A., The Anatomy and Histology of the Eye and Orbit of the Rabbit. Trans Am Ophthalmol Soc, 1929. 27: p. 400 2-441.
7. Dulai, K.S., et al., Sequence divergence, polymorphism and evolution of the middle-wave and long-wave visual pigment genes of great apes and old world monkeys. Vision Res, 1994. 34(19): p. 2483-2491.
8. Dyer, M.A., et al., Developmental sources of conservation and variation in the evolution of the primate eye. Proc Natl Acad Sci U S A, 2009. 106(22): p. 8963-8.
9. Gerald H. Jacobs, J.N., Color Vision: How Our Eyes Reflect Primate Evolution. Scientific American, 2009.
10. Hallgrímsson, B. and D.E. Lieberman, Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 2008. 48(3): p. 373-384.
11. Hunt, D.M., et al., Sequence and Evolution of the Blue Cone Pigment Gene in Old and New World Primates. Genomics, 1995. 27(3): p. 535-538.
12. Hunt, D.M., et al., Molecular evolution of trichromacy in primates. Vision Res, 1998. 38(21): p. 3299-306.
13. Jacobs, G.H., The distribution and nature of colour vision among the mammals. Biol Rev Camb Philos Soc, 1993. 68(3): p. 413-71.
14. Jacobs, G.H., Primate photopigments and primate color vision. Proc Natl Acad Sci U S A, 1996. 93(2): p. 577-81.
15. Jacobs, G.H., A perspective on color vision in platyrrhine monkeys. Vision Res, 1998. 38(21): p. 3307-13.
16. Jacobs, G.H., Evolution of colour vision in mammals. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1531): p. 2957-67.
17. Jacobs, G.H. and J.F. Deegan, Photopigments and colour vision in New World monkeys from the family Atelidae. 2001. p. 695-702.
18. Jacobs, G.H. and J.F. Deegan, 2nd, Diurnality and cone photopigment polymorphism in strepsirrhines: examination of linkage in Lemur catta. Am J Phys Anthropol, 2003. 122(1): p. 66-72.
19. Jacobs, G.H., J.F. Deegan, 2nd, and J. Neitz, Photopigment basis for dichromatic color vision in cows, goats, and sheep. Vis Neurosci, 1998. 15(3): p. 581-4.
20. Jacobs, G.H., et al., Opsin gene and photopigment polymorphism in a prosimian primate. Vision Res, 2002. 42(1): p. 11-8.
21. Jacobs, G.H., et al., Trichromatic colour vision in New World monkeys. Nature, 1996. 382(6587): p. 156-8.
22. Jacobs, G.H., M. Neitz, and J. Neitz, Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc Biol Sci, 1996. 263(1371): p. 705-10.
23. Jacobs, G.H. and M.P. Rowe, Evolution of vertebrate colour vision. Clinical and Experimental Optometry, 2004. 87(4-5): p. 206-216.
24. Jones, K.E., et al., A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev Camb Philos Soc, 2002. 77(2): p. 223-59.
25. Kirk, E.C., Comparative morphology of the eye in primates. Anat Rec A Discov Mol Cell Evol Biol, 2004. 281(1): p. 1095-103.
26. Kraft, T.W., J. Neitz, and M. Neitz, Spectra of human L cones. Vision Res, 1998. 38(23): p. 3663-70.
27. Luo, Z.X., Transformation and diversification in early mammal evolution. Nature, 2007. 450(7172): p. 1011-9.
28. Mollon, J.D., “Tho’ she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J Exp Biol, 1989. 146(1): p. 21-38.
29. Mollon, J.D. and J.K. Bowmaker, The spatial arrangement of cones in the primate fovea. Nature, 1992. 360(6405): p. 677-679.
30. Mollon, J.D., J.K. Bowmaker, and G.H. Jacobs, Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci, 1984. 222(1228): p. 373-99.
31. Murphy, W.J., et al., Molecular phylogenetics and the origins of placental mammals. Nature, 2001. 409(6820): p. 614-618.
32. Nakashige, M., A.L. Smith, and D.S. Strait, Biomechanics of the macaque postorbital septum investigated using finite element analysis: implications for anthropoid evolution. J Anat, 2011. 218(1): p. 142-50.
33. Nei, M., J. Zhang, and S. Yokoyama, Color vision of ancestral organisms of higher primates. 1997. p. 611-618.
34. Neitz, J., T. Geist, and G.H. Jacobs, Color vision in the dog. Vis Neurosci, 1989. 3(2): p. 119-25.
35. Neitz, J. and G.H. Jacobs, Polymorphism of the long-wavelength cone in normal human colour vision. Nature, 1986. 323(6089): p. 623-625.
36. Neuweiler, G., The biology of bats. 2000, New York: Oxford University Press. ix, 310 p.
37. Nikaido, M., et al., Monophyletic origin of the order chiroptera and its phylogenetic position among mammalia, as inferred from the complete sequence of the mitochondrial DNA of a Japanese megabat, the Ryukyu flying fox (Pteropus dasymallus). J Mol Evol, 2000. 51(4): p. 318-28.
38. Pirie, A., Crystals of riboflavin making up the tapetum lucidum in the eye of a lemur. Nature, 1959. 183(4666): p. 985-6.
39. Rehorek, S.J. and T.D. Smith, The primate Harderian gland: Does it really exist? Ann Anat, 2006. 188(4): p. 319-27.
40. Ross, C.F. and W.L. Hylander, In vivo and in vitro bone strain in the owl monkey circumorbital region and the function of the postorbital septum. Am J Phys Anthropol, 1996. 101(2): p. 183-215.
41. Ross, C.F. and E.C. Kirk, Evolution of eye size and shape in primates. J Hum Evol, 2007. 52(3): p. 294-313.
42. Rowe, T.B., T.E. Macrini, and Z.-X. Luo, Fossil Evidence on Origin of the Mammalian Brain. Science, 2011. 332(6032): p. 955-957.
43. Shi, Y. and S. Yokoyama, Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8308-13.
44. Shyue, S.K., et al., Adaptive evolution of color vision genes in higher primates. Science, 1995. 269(5228): p. 1265-1267.
45. Smith, A.C., et al., The effect of colour vision status on the detection and selection of fruits by tamarins (Saguinus spp.). J Exp Biol, 2003. 206(Pt 18): p. 3159-65.
46. Springer, M.S., et al., Placental mammal diversification and the Cretaceous–Tertiary boundary. 2003. p. 1056-1061.
47. Travis, D.S., J.K. Bowmaker, and J.D. Mollon, Polymorphism of visual pigments in a callitrichid monkey. Vision Res, 1988. 28(4): p. 481-90.
48. Veilleux, C.C. and D.A. Bolnick, Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. Am J Primatol, 2009. 71(1): p. 86-90.
49. Veilleux, C.C. and E.C. Kirk, Visual acuity in the cathemeral strepsirrhine Eulemur macaco flavifrons. Am J Primatol, 2009. 71(4): p. 343-52.
50. Wang, D., et al., Molecular Evolution of Bat Color Vision Genes. 2004. p. 295-302.
51. Wang, D., et al., Molecular evolution of bat color vision genes. Mol Biol Evol, 2004. 21(2): p. 295-302.
52. Warrant, E.J., Mammalian Vision: Rods Are a Bargain. Current Biology, 2009. 19(2): p. R69-R71.
53. Whitmore, A.V. and J.K. Bowmaker, Differences in the Temporal Properties of Human Longwave- and Middlewave-sensitive Cones. European Journal of Neuroscience, 1995. 7(6): p. 1420-1423.
54. Wikler, K.C. and P. Rakic, Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci, 1990. 10(10): p. 3390-401.
55. Wimsatt, W.A., Biology of bats. 1970: Academic Press.
56. Winter, Y., J. Lopez, and O. von Helversen, Ultraviolet vision in a bat. Nature, 2003. 425(6958): p. 612-614.
Ch24
1. Chae, J. and S. Nishida, Integumental ultrastructure and color patterns in the iridescent copepods of the family Sapphirinidae (Copepoda: Poecilostomatoida). Marine Biology, 1994. 119(2): p. 205-210.
2. Chae, J. and S. Nishida, Spectral patterns of the iridescence in the males of Sapphirina (Copepoda: Poecilostomatoida). Journal of the Marine Biological Association of the United Kingdom, 1999. 79(03): p. 437-443.
3. Chamberlain, S.C., Vision in hydrothermal vent shrimp. Philos Trans R Soc Lond B Biol Sci, 2000. 355(1401): p. 1151-4.
4. Dover, C.L.V., et al., A novel eye in ‘eyeless’ shrimp from hydrothermal vents of the Mid-Atlantic Ridge. Nature, 1989. 337(6206): p. 458-460.
5. Johnsen, S., Transparent animals. Sci Am, 2000. 282(2): p. 80-9.
6. Lakin, R.C., et al., Retinal anatomy of Chorocaris chacei, a deep-sea hydrothermal vent shrimp from the Mid-Atlantic Ridge. J Comp Neurol, 1997. 385(4): p. 503-14.
7. Land, M.F. and D.-E. Nilsson, Animal eyes. Oxford animal biology series. 2002, Oxford ; New York: Oxford University Press. xii, 221 p., 4 p. of plates.
8. Nilsson, D.E., R. Odselius, and R. Elofsson, The compound eye of Leptodora kindtii (Cladocera). An adaptation to planktonic life. Cell Tissue Res, 1983. 230(2): p. 401-10.
9. Nuckley, D.J., et al., Retinal Anatomy of a New Species of Bresiliid Shrimp from a Hydrothermal Vent Field on the Mid-Atlantic Ridge. Biological Bulletin, 1996. 190(1): p. 98-110.
10. O’Neill, P.J., et al., The morphology of the dorsal eye of the hydrothermal vent shrimp, Rimicaris exoculata. Vis Neurosci, 1995. 12(5): p. 861-75.
11. Wolken, J.J., Photobehavior of marine invertebrates: extraocular photoreception. Comp Biochem Physiol C, 1988. 91(1): p. 145-9.
Ch25
1. Colitz, C.M., et al., Characterization of progressive keratitis in Otariids. Vet Ophthalmol, 2010. 13 Suppl: p. 47-53.
2. Dawson, W.W., et al., Static and kinetic properties of the dolphin pupil. Am J Physiol, 1979. 237(5): p. R301-5.
3. Dawson, W.W., J.P. Schroeder, and J.F. Dawson, THE OCULAR FUNDUS OF TWO CETACEANS. Marine Mammal Science, 1987. 3(1): p. 1-13.
4. Fasick, J.I., et al., The visual pigments of the bottlenose dolphin (Tursiops truncatus). Vis Neurosci, 1998. 15(4): p. 643-51.
5. Fasick, J.I. and P.R. Robinson, Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Vis Neurosci, 2000. 17(5): p. 781-8.
6. Hanke, F., et al., Basic mechanisms in pinniped vision. Experimental Brain Research, 2009. 199(3): p. 299-311.
7. Hanke, F.D., et al., Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vision Res, 2006. 46(6-7): p. 837-47.
8. Hanke, F.D., et al., Multifocal lenses in a monochromat: the harbour seal. J Exp Biol, 2008. 211(Pt 20): p. 3315-22.
9. Herman, L.M., et al., Bottle-nosed dolphin: double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science, 1975. 189(4203): p. 650-2.
10. Mass, A.M., A high-resolution area in the retinal ganglion cell layer of the Steller’s sea lion (Eumetopias jubatus): a topographic study. Dokl Biol Sci, 2004. 396: p. 187-90.
11. Mass, A.M. and A.Y. Supin, Adaptive features of aquatic mammals’ eye. Anat Rec (Hoboken), 2007. 290(6): p. 701-15.
12. Miller, S.N., C.M. Colitz, and R.R. Dubielzig, Anatomy of the California sea lion globe. Vet Ophthalmol, 2010. 13 Suppl: p. 63-71.
13. Ninomiya, H. and E. Yoshida, Functional anatomy of the ocular circulatory system: vascular corrosion casts of the cetacean eye. Vet Ophthalmol, 2007. 10(4): p. 231-8.
14. Peichl, L., G. Behrmann, and R.H. Kroger, For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci, 2001. 13(8): p. 1520-8.
15. Pepper, R.L. and J.V. Simmons, Jr., In-air visual acuity of the bottlenose dolphin. Exp Neurol, 1973. 41(2): p. 271-6.
16. Rybczynski, N., M.R. Dawson, and R.H. Tedford, A semi-aquatic Arctic mammalian carnivore from the Miocene epoch and origin of Pinnipedia. Nature, 2009. 458(7241): p. 1021-4.
17. Sivak, J.G., et al., The eye of the hooded seal, Cystophora cristata, in air and water. J Comp Physiol A, 1989. 165(6): p. 771-7.
18. Spurr-Michaud, S., P. Argueso, and I. Gipson, Assay of mucins in human tear fluid. Exp Eye Res, 2007. 84(5): p. 939-50.
19. Welsch, U., et al., Microscopic anatomy of the eye of the deep-diving Antarctic Weddell seal (Leptonychotes weddellii). J Morphol, 2001. 248(2): p. 165-74.
20. Young, N.M. and W.W. Dawson, THE OCULAR SECRETIONS OF THE BOTTLENOSE DOLPHIN TURSIOPS TRUNCATUS. Marine Mammal Science, 1992. 8(1): p. 57-68.
Ch26
1. Gamlin, P.D., et al., Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res, 2007. 47(7): p. 946-54.
2. Mollon, J.D., B.C. Regan, and J.K. Bowmaker, What is the function of the cone-rich rim of the retina? Eye (Lond), 1998. 12 ( Pt 3b): p. 548-52.
3. Sekaran, S., et al., Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol, 2005. 15(12): p. 1099-107.
General Section
1. The eye as a replicating and diverging, modular developmental unit. Trends in Ecology and Evolution, 2003. 18: p. 623-627.
2. Ankel-Simons, F. and D.T. Rasmussen, Diurnality, nocturnality, and the evolution of primate visual systems. Am J Phys Anthropol, 2008. Suppl 47: p. 100-17.
3. Archer, S.N., Adaptive mechanisms in the ecology of vision. 1998: Kluwer Academic Publishers.
4. Arendt, D., Evolution of eyes and photoreceptor cell types. Int J Dev Biol, 2003. 47(7-8): p. 563-71.
5. Berner, R.A., J.M. VandenBrooks, and P.D. Ward, Oxygen and Evolution. Science, 2007. 316(5824): p. 557-558.
6. Busettini, C., G.S. Masson, and F.A. Miles, A role for stereoscopic depth cues in the rapid visual stabilization of the eyes. Nature, 1996. 380(6572): p. 342-345.
7. Carpenter, R., Movements of the Eyes. 1988. 593.
8. Carroll, S.B., Endless forms most beautiful : the new science of evo devo and the making of the animal kingdom. 1st ed. 2005, New York: W.W. Norton & Co. xi, 350 p., [16] p. of plates.
9. Collin, S.P., et al., The evolution of early vertebrate photoreceptors. Philos Trans R Soc Lond B Biol Sci, 2009. 364(1531): p. 2925-40.
10. Crescitelli, F., The Visual system in vertebrates. Handbook of sensory physiology. 1977, Berlin ; New York: Springer-Verlag. xi, 813 p.
11. Cronly-Dillon, J. and R.L. Gregory, Evolution of the eye and visual system. Vision and visual dysfunction. 1991, Boca Raton: CRC Press. xii, 493 p.
12. Cvekl, A., et al., Regulation of gene expression by Pax6 in ocular cells: a case of tissue-preferred expression of crystallins in lens. Int J Dev Biol, 2004. 48(8-9): p. 829-44.
13. Darwin, C., On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. 1859, London: John Murray. ix, [1], 502 p., [1] folded leaf of plates.
14. Dawkins, R., Evolutionary biology. The eye in a twinkling. Nature, 1994. 368(6473): p. 690-1.
15. Dawkins, R., Climbing mount improbable. 1996, New York: Norton. xii, 340 p.
16. Dawkins, R., The ancestor’s tale : a pilgrimage to the dawn of life. 2004, London: Weidenfeld & Nicolson Illustrated. 528 p.
17. De Duve, C., Life evolving : molecules, mind, and meaning. 2002, New York: Oxford University Press. xv, 341 p.
18. Donoghue, M.J., et al., The Importance of Fossils in Phylogeny Reconstruction. Annual Review of Ecology and Systematics, 1989. 20(1): p. 431-460.
19. Doolittle, W.F., Uprooting the tree of life. Sci Am, 2000. 282(2): p. 90-5.
20. Dunn, C.W., et al., Broad phylogenomic sampling improves resolution of the animal tree of life. Nature, 2008. 452(7188): p. 745-9.
21. Eakin, R.M., The third eye. 1973, Berkeley: University of California Press.
22. Falciatore, A., C. Bowler, and P.S. Gerald, The Evolution and Function of Blue and Red Light Photoreceptors, in Current Topics in Developmental Biology. 2005, Academic Press. p. 317-350.
23. Fernald, R.D., The evolution of eyes. Brain Behav Evol, 1997. 50(4): p. 253-9.
24. Fernald, R.D., Evolving eyes. Int J Dev Biol, 2004. 48(8-9): p. 701-5.
25. Fernald, R.D., Eyes: variety, development and evolution. Brain Behav Evol, 2004. 64(3): p. 141-7.
26. Fernald, R.D., Casting a genetic light on the evolution of eyes. Science, 2006. 313(5795): p. 1914-8.
27. Fortey, R.A., Life, an unauthorised biography : a natural history of the first four thousand million years of life on earth. 1997, London: HarperCollins Publishers. xiv, 398 p., [32] p. of plates.
28. Fuhrman, J., Genome sequences from the sea. Nature, 2003. 424(6952): p. 1001-1002.
29. Gee, H., In search of deep time : beyond the fossil record to a new history of life. 1999, New York: Free Press. 267 p.
30. Gehring, W.J., Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol, 2004. 48(8-9): p. 707-17.
31. Gehring, W.J., New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered, 2005. 96(3): p. 171-84.
32. Gehring, W.J. and K. Ikeo, Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet, 1999. 15(9): p. 371-7.
33. Goldsmith, T.H., Optimization, constraint, and history in the evolution of eyes. Q Rev Biol, 1990. 65(3): p. 281-322.
34. Goldsmith, T.H., Optimization, constraint, and history in the evolution of eyes. Q Rev Biol, 1990. 65(3): p. 281-322.
35. Gould, S.J., The evolution of life on the earth. Sci Am, 1994. 271(4): p. 84-91.
36. Gregory, T., Understanding Evolutionary Trees. Evolution: Education and Outreach, 2008. 1(2): p. 121-137.
37. Halder, G., P. Callaerts, and W.J. Gehring, New perspectives on eye evolution. Curr Opin Genet Dev, 1995. 5(5): p. 602-9.
38. Harvey, P.H. and C.J. Godfray, EVOLUTION: A Horn for an Eye. Science, 2001. 291(5508): p. 1505-1506.
39. Herring, P.J. and Marine Biological Association of the United Kingdom., Light and life in the sea : a volume arising from the Symposium on Light and Life in the Sea. 1990, Cambridge [England] ; New York, NY, USA: Cambridge University Press. 357 p.
40. Hudson, A.J., The evolution of the eye from algae and jellyfish to humans : how vision adapts to environment. 2010, Lewiston, N.Y.: Edwin Mellen Press.
41. Hunt, D.M., et al., Vision in the ultraviolet. Cell Mol Life Sci, 2001. 58(11): p. 1583-98.
42. Hutchinson, G.E., et al., Fossils, Early Life, and Atmospheric History: Discussion. Proceedings of the National Academy of Sciences of the United States of America, 1965. 53(6): p. 1213-1215.
43. Jacobs, G.H., Comparative color vision. Academic Press series in cognition and perception. 1981, New York: Academic Press. viii, 209 p.
44. Janvier, P., Early vertebrates. 1996, Oxford; New York: Clarendon Press ; Oxford University Press.
45. Jarvik, E., Basic structure and evolution of vertebrates. 1980, London; New York: Academic Press.
46. Jonasova, K. and Z. Kozmik, Eye evolution: lens and cornea as an upgrade of animal visual system. Semin Cell Dev Biol, 2008. 19(2): p. 71-81.
47. Knoll, A.H., Life on a young planet : the first three billion years of evolution on Earth. 2003, Princeton, N.J.: Princeton University Press. x, 277 p.
48. Lamb, T.D., S.P. Collin, and E.N. Pugh, Jr., Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat Rev Neurosci, 2007. 8(12): p. 960-76.
49. Land, M.F., The optics of animal eyes. Contemporary Physics, 1988. 29(5): p. 435 – 455.
50. Land, M.F., Biological optics: deep reflections. Curr Biol, 2009. 19(2): p. R78-80.
51. Land, M.F. and R.D. Fernald, The Evolution of Eyes. Annual Review of Neuroscience, 1992. 15(1): p. 1-29.
52. Land, M.F. and D.-E. Nilsson, Animal eyes. Oxford animal biology series. 2002, Oxford ; New York: Oxford University Press. xii, 221 p., 4 p. of plates.
53. Luo, D.-G., T. Xue, and K.-W. Yau, How vision begins: An odyssey. Proceedings of the National Academy of Sciences, 2008. 105(29): p. 9855-9862.
54. Marshall, N.J. and M.F. Land, Some optical features of the eyes of stomatopods. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1993. 173(5): p. 565-582.
55. Mittelstaedt, H., Interaction of eye-, head-, and trunk-bound information in spatial perception and control. J Vestib Res, 1997. 7(4): p. 283-302.
56. Moczek, A.P., Evolutionary biology: The origins of novelty. Nature, 2011. 473(7345): p. 34-35.
57. Murphy, C.J. and H.C. Howland, The optics of comparative ophthalmoscopy. Vision Res, 1987. 27(4): p. 599-607.
58. Nilsson, D.-E., The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1531): p. 2833-2847.
59. Nilsson, D.E., Eye ancestry: old genes for new eyes. Curr Biol, 1996. 6(1): p. 39-42.
60. Nilsson, D.E., Eye evolution: a question of genetic promiscuity. Curr Opin Neurobiol, 2004. 14(4): p. 407-14.
61. Nilsson, D.E., Photoreceptor evolution: ancient siblings serve different tasks. Curr Biol, 2005. 15(3): p. R94-6.
62. Nilsson, D.E. and S. Pelger, A pessimistic estimate of the time required for an eye to evolve. Proc Biol Sci, 1994. 256(1345): p. 53-8.
63. Nilsson, D.E. and E.J. Warrant, Visual discrimination: Seeing the third quality of light. Curr Biol, 1999. 9(14): p. R535-7.
64. Nilsson, D.-E. and D. Arendt, Eye Evolution: The Blurry Beginning. Current biology : CB, 2008. 18(23): p. R1096-R1098.
65. Plachetzki, T.H.O.a.D.C., Encyclopedia of Eye, in The Evolution of Opsins. 2010, Elsevier LTD. p. 82-88.
66. Provencio, I., The hidden organ in your eyes. Sci Am, 2011. 304(5): p. 54-59.
67. Queiroz, A.d., Do Image-Forming Eyes Promote Evolutionary Diversification? Evolution, 1999. 53(6): p. 1654-1664.
68. Queiroz, A.d., Do Image-Forming Eyes Promote Evolutionary Diversification? Evolution, 1999. 53(6): p. 1654-1664.
69. Rowe, M., INFERRING THE RETINAL ANATOMY AND VISUAL CAPACITIES OF EXTINCT VERTEBRATES. Palaeontologia Electronica, 2000. 3(1): p. 3-43.
70. Stavenga, D.G. and R.C. Hardie. Facets of vision. Berlin; New York: Springer-Verlag.
71. Stavenga, D.G. and R.C. Hardie, Facets of vision. 1989, Berlin ; New York: Springer-Verlag. x, 454 p.
72. Vorobyev, M., Coloured oil droplets enhance colour discrimination. Proc Biol Sci, 2003. 270(1521): p. 1255-61.
73. Walls, G.L., The vertebrate eye and its adaptive radiation. Cranbrook institute of science Bulletin. 1942, Bloomfield Hills, Mich.,: Cranbrook Institute of Science. xiv p., 1 l., 785 p.
74. Wolken, J.J., Light detectors, photoreceptors, and imaging systems in nature. 1995, New York: Oxford University Press. xii, 259 p.
75. Yokoyama, S., Molecular evolution of vertebrate visual pigments. Prog Retin Eye Res, 2000. 19(4): p. 385-419.
76. Yokoyama, S., Molecular evolution of color vision in vertebrates. Gene, 2002. 300(1-2): p. 69-78.
77. Yoshida, T., et al., Rapid evolution drives ecological dynamics in a predator-prey system. Nature, 2003. 424(6946): p. 303-6.
78. Zeki, S., Comparative Color Vision. By G. H. Jacobs. Pp. 209. (Academic Press, London, 1982.) £16.00. $24.00. Experimental Physiology, 1983. 68(4): p. 747.
79. Zuker, C.S., On the evolution of eyes: would you like it simple or compound? Science, 1994. 265(5173): p. 742-3.
Accomodation Section
1. Sivak, J.G., Accommodation in vertebrates: a contemporary survey. Curr Top Eye Res, 1980. 3: p. 281-330.
2. Beisel, K.W., et al., Development and evolution of the vestibular sensory apparatus of the mammalian ear. J Vestib Res, 2005. 15(5-6): p. 225-41.
3. Graf, W. and W.J. Brunken, Elasmobranch oculomotor organization: anatomical and theoretical aspects of the phylogenetic development of vestibulo-oculomotor connectivity. J Comp Neurol, 1984. 227(4): p. 569-81.
4. Fritzsch, B., Evolution of the vestibulo-ocular system. Otolaryngol Head Neck Surg, 1998. 119(3): p. 182-92.
5. Carey, J. and N. Amin, Evolutionary changes in the cochlea and labyrinth: Solving the problem of sound transmission to the balance organs of the inner ear. Anat Rec A Discov Mol Cell Evol Biol, 2006. 288(4): p. 482-9.
6. Trinajstic, K., et al., Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biol Lett, 2007. 3(2): p. 197-200.
7. Simpson, J.I. and W. Graf, Eye-muscle geometry and compensatory eye movements in lateral-eyed and frontal-eyed animals. Ann N Y Acad Sci, 1981. 374: p. 20-30.
8. Gehring, W.J., Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol, 2004. 48(8-9): p. 707-17.
9. Neal, H.V., The history of the eye muscles. Journal of Morphology, 1918. 30(2): p. 433-453.
10. Martin, G.R., How do birds accommodate? Nature, 1987. 328(6129): p. 383.
11. Bemis, W.E. and R.G. Northcutt, Innervation of the basicranial muscle of <i>Latimeria chalumnae</i>. Environmental Biology of Fishes, 1991. 32(1): p. 147-158.
12. Mittelstaedt, H., Interaction of eye-, head-, and trunk-bound information in spatial perception and control. J Vestib Res, 1997. 7(4): p. 283-302.
13. Sivak, J.G., T. Hildebrand, and C. Lebert, Magnitude and rate of accommodation in diving and nondiving birds. Vision Research, 1985. 25(7): p. 925-933.
14. Gillum, W., Mechanisms of accommodation in vertebrates. Ophthalmic Semin, 1976. 1(3): p. 253-86.
15. Graf, W., Motion detection in physical space and its peripheral and central representation. Ann N Y Acad Sci, 1988. 545: p. 154-69.
16. Young, G.C., Number and arrangement of extraocular muscles in primitive gnathostomes: evidence from extinct placoderm fishes. Biol Lett, 2008. 4(1): p. 110-4.
17. Guyton, D., Ocular torsion: Sensorimotor principles. Graefe’s Archive for Clinical and Experimental Ophthalmology, 1988. 226(3): p. 241-245.
18. Fritzsch, B., et al., Organization of the six motor nuclei innervating the ocular muscles in lamprey. J Comp Neurol, 1990. 294(4): p. 491-506.
19. Fritzsch, B. and R.G. Northcutt, Origin and migration of trochlear, oculomotor and abducent motor neurons in Petromyzon marinus L. Brain Res Dev Brain Res, 1993. 74(1): p. 122-6.
20. Mazan, S., et al., Otx1 gene-controlled morphogenesis of the horizontal semicircular canal and the origin of the gnathostome characteristics. Evol Dev, 2000. 2(4): p. 186-93.
21. Maisey, J.G., Remarks on the inner ear of elasmobranchs and its interpretation from skeletal labyrinth morphology. J Morphol, 2001. 250(3): p. 236-64.
22. Howland, H.C., et al., Restricted range of ocular accommodation in barn owls (Aves:Tytonidae). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1991. 168(3): p. 299-303.
23. Bellhorn, R.W., Retinal nutritive systems in vertebrates. Seminars in Avian and Exotic Pet Medicine, 1997. 6(3): p. 108-118.
24. Roper-Hall, G., Seventh annual Richard G. Scobee Memorial Lecture: the developmental history of eye movements. Am Orthopt J, 1977. 27: p. 33-43.
25. Robinson, D.A., The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern, 1982. 46(1): p. 53-66.
26. Murphy, C.J., et al., Visual accommodation in the flying fox (Pteropus giganteus). Vision Res, 1983. 23(6): p. 617-20.
27. Ott, M., Visual accommodation in vertebrates: mechanisms, physiological response and stimuli. J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 2006. 192(2): p. 97-111.